参考文献/References:
[1] Lee J H, Katoch A, Choi S W, et al. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2015, 7(5) : 3101-3109.
[2] Zhao Jing, Wang Weinan, Liu Yingping, et al. Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance[J]. Sensors and Actuators B: Chemical, 2011, 160(1):604-608.
[3] Yong J S, Chang H S, Anwar M S, et al. Structure and properties of transparent conductive Sb2O5-doped SnO2 thin films fabricated by using pulsed laser deposition[J]. Journal of the Korean Physical Society, 2012, 60(10):1543-1547.
[4] Ding Shujiang, Chen Junsong, Wen Louxiong. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties[J]. Advanced Functional Materials, 2011, 21(21):4120-4125.
[5] Jin Enmei, Park J Y, Gu Haibon, et al. Synthesis of SnO2 hollow fiber using kapok biotemplate for application in dye-sensitized solar cells[J]. Materials Letters, 2015, 159:321-324.
[6] Liu Cheng, Xian Hui, Jiang Zheng, et al. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177:542-552.
[7] 曹慧群, 林碧玉, 张晟诘,等. 水热法制备锰锌铁氧体/碳纳米管磁性材料[J]. 深圳大学学报理工版, 2013, 30(1):12-16.
Cao Huiqun, Lin Biyu, Zhang Shengjie, et al. Hydrothermal synthesis carbon nanotubes coating with Mn0.5Zn0.5Fe2O4 magnetic materials[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1):12-16.(in Chinese)
[8] Xu Jiaqiang, Wang Ding, Qin Lipeng, et al. SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties[J]. Sensors & Actuators B: Chemical, 2009, 137(2):490-495.
[9] Hu Jun, Yin Guilin, Chen Junchen, et al. An olive-shaped SnO2 nanocrystal-based low concentration H2S gas sensor with high sensitivity and selectivity[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20537-20542.
[10] Srivastava A, Lakshmikumar S T, Srivastava A K, et al. Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique[J]. Sensors & Actuators B Chemical, 2007, 126(2):583-587.
[11] Krishnakumar T, Pinna N, Kumari K P, et al. Microwave-assisted synthesis and characterization of tin oxide nanoparticles[J]. Materials Letters, 2008, 62(19):3437-3440.
[12] Yanagimoto T, Yu Y T, Kaneko K. Microstructure and CO gas sensing property of Au/SnO2 core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method[J]. Sensors and Actuators B: Chemical, 2012, 166/167(10):31-35.
[13] Krishnakumar T, Jayaprakash R, Parthibavarman M, et al. Microwave-assisted synthesis and investigation of SnO2 nanoparticles[J]. Materials Letters, 2009, 63(11):896-898.
[14] Jia Yong, Chen Xing, Guo Zheng, et al. In situ growth of tin oxide nanowires, nanobelts, and nanodendrites on the surface of iron-doped tin oxide/multiwalled carbon nanotube nanocomposites[J]. Journal of Physical Chemistry C, 2009, 113(48):20583-20588.
[15] Zhang Dongfeng, Sun Lingdong, Yin Jialu, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods[J]. Advanced Materials, 2003, 15(12):1022-1025.
[16] Cheng Bin, Russell J M, Shi Wensheng, et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J]. Journal of the American Chemical Society, 2004, 126(19):5972-5973.
[17] Leite E R, Giraldi T R, Pontes F M, et al. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature[J]. Applied Physics Letters, 2003, 83(8):1566-1568.
[18] Oweis R J, Albiss B A, Al-Widyan M I, et al. Hybrid zinc oxide nanorods/carbon nanotubes composite for nitrogen dioxide gas sensing[J]. Journal of Electronic Materials, 2014, 43(9):3222-3228.
[19] Phadungdhitidhada S, Thanasanvorakun S, Mangkorntong P, et al. SnO2 nanowires mixed nanodendrites for high ethanol sensor response[J]. Current Applied Physics, 2011, 11(6):1368-1373.
[20] Li Wenqi, Ma Shuyi, Li Yingfeng, et al. Enhanced ethanol sensing performance of hollow ZnO-SnO2 core-shell nanofibers[J]. Sensors & Actuators B Chemical, 2015, 211:392-402.
[21] Li Kunmu, Li Yijing, Lu Mingyen, et al. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties[J]. Advanced Functional Materials, 2009, 19(15):2453-2456.
[22] Liu Qian, Zhang Zhengyu, Li Wenyao, et al. Ethanol gas sensor based on a self-supporting hierarchical SnO2 nanorods array[J]. Crystengcomm, 2015, 17:1800-1804.
[23] Zhou Xiaoming, Fu Wuyou, Yang Haibin, et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process[J]. Materials Chemistry & Physics, 2010, 124(1):614-618.
[24] Liu Bin, Zhang Lihui, Zhao Hua, et al. Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods[J]. Sensors & Actuators B: Chemical, 2012, 173:643-651.
[25] Lee Y C, Huang Hui, Tan O K, et al. Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films[J]. Sensors & Actuators B: Chemical, 2008, 132(1):239-242.
[26] Guan Yue, Wang Dawei, Zhou Xin, et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures[J]. Sensors & Actuators B: Chemical, 2014, 191(2):45-52.
[27] Wang Wenchuang, Tian Yongtao, Li Xinjian, et al. Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres[J]. Applied Surface Science, 2012, 261(1):890-895.
[28] Hwang I S, Choi J K, Woo H S, et al. Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks[J]. ACS Applied Materials & Interfaces, 2011, 3(8):3140-3145.
[29] Li Hui, Xu Jiaqiang, Zhu Yongheng, et al. Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires[J]. Talanta, 2010, 82(2):458-463.
[30] Sun Peng, Yu Yingshuo, Xu Jing, et al. One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading[J]. Sensors & Actuators B: Chemical, 2011, 160(1):244-250.
[31] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview[J]. Sensors & Actuators B: Chemical, 2009, 140(1):319-336.
相似文献/References:
[1]张鸿,陈清武,姚丹,等.用典型植物监测环境中有机氟污染物的可行性[J].深圳大学学报理工版,2013,30(No.1(001-110)):35.[doi:10.3724/SP.J.1249.2013.01035]
Zhang Hong,Chen Qingwu,Yao Dan,et al.Feasibility to monitor environmental organofluorine pollutants using typical plants[J].Journal of Shenzhen University Science and Engineering,2013,30(2):35.[doi:10.3724/SP.J.1249.2013.01035]
[2]刘国卿,刘德全,周志华.垃圾焚烧炉飞灰和烟气中多氯化萘的分布特征[J].深圳大学学报理工版,2015,32(4):398.[doi:10.3724/SP.J.1249.2015.04398]
Liu Guoqing,Liu Dequan,and Zhou Zhihua.Polychlorinated naphthalene distribution in fly-ash and flue gas from waste incinerator[J].Journal of Shenzhen University Science and Engineering,2015,32(2):398.[doi:10.3724/SP.J.1249.2015.04398]
[3]吕维忠,黄德贞,罗仲宽,等.钨-氟共掺杂二氧化钒的水热法制备及表征[J].深圳大学学报理工版,2015,32(4):385.[doi:10.3724/SP.J.1249.2015.04385]
Lyu Weizhong,Huang Dezhen,et al.Hydrothermal synthesis and characterization of tungsten and fluorine co-doped vanadium dioxide[J].Journal of Shenzhen University Science and Engineering,2015,32(2):385.[doi:10.3724/SP.J.1249.2015.04385]
[4]邢建博,岑远,尹雪,等.ZnO及Au-ZnO中空微球的制备及其气敏性研究[J].深圳大学学报理工版,2018,35(3):267.[doi:10.3724/SP.J.1249.2018.03267]
XING Jianbo,CEN Yuan,YIN Xue,et al.Synthesis and sensitivity of ZnO and Au-ZnO hollow microspheres[J].Journal of Shenzhen University Science and Engineering,2018,35(2):267.[doi:10.3724/SP.J.1249.2018.03267]