[1]李群,黄金玉,杜宇,等.微波水热法构筑高性能SnO2基乙醇传感器[J].深圳大学学报理工版,2016,33(2):147-153.[doi:10.3724/SP.J.1249.2016.02147]
 Li Qun,Huang Jinyu,Du Yu,et al.Highly sensitive ethanol sensor based on SnO2 nanorods synthesized by microwave-assisted hydrothermal method[J].Journal of Shenzhen University Science and Engineering,2016,33(2):147-153.[doi:10.3724/SP.J.1249.2016.02147]
点击复制

微波水热法构筑高性能SnO2基乙醇传感器()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第2期
页码:
147-153
栏目:
物理
出版日期:
2016-03-20

文章信息/Info

Title:
Highly sensitive ethanol sensor based on SnO2 nanorods synthesized by microwave-assisted hydrothermal method
文章编号:
201602007
作者:
李群12黄金玉2杜宇2潘勤鹤1
1)海南大学材料与化工学院,海南海口 570100
2)深圳大学物理与能源学院,广东深圳 518060
Author(s):
Li Qun12 Huang Jinyu2 Du Yu2 and Pan Qinhe1
1)Materials and Chemical Engineering, Hainan University, Haikou 570100, Hainan Province, P.R.China
2) College of Physics and Energy, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
无机材料环境监测传感器气敏微波水热法氧化锡乙醇
Keywords:
inorganic materials environmental monitoring sensor gas sensing microwave-assisted hydrothermal method SnO2 ethanol
分类号:
O 69;X 831
DOI:
10.3724/SP.J.1249.2016.02147
文献标志码:
A
摘要:
以二水合二氯亚锡为原料,无任何添加剂,通过微波水热法快速合成氧化锡(SnO2)纳米棒.使用X射线衍射和扫描电子显微镜对样品的结构、形貌进行表征.研究发现,制备的SnO2纳米棒颗粒尺寸均一,分散性较好,纳米棒的表面布满颗粒状的突起.以制得的SnO2纳米棒构筑旁热式气敏元件,采用静态配气法测试了气敏元件对乙醇、甲醇、丙酮和氨气等气体的敏感性能.结果表明,该气敏元件对乙醇具有灵敏度高、检测下限低、选择性好、响应和恢复迅速等优点.
Abstract:
Tin dioxide nanorods were successfully synthesized by a microwave-assisted hydrothermal method with Tin(II) chloride dehydrate as the raw material without any additives. The structure and morphology of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The result indicates that the particle size of the SnO2 nanorod is uniform and relatively dispersive. It is found that the surface of nanorods is filled with irregular protuberances. The sensibilities of such a SnO2 sensor to ethanol, methanol, acetone, ammonia, and so on were measured by the static volumetric method. The sensor exhibits high sensitivity, low detection limit, excellent selectivity, fast response and recovery characteristics to ethanol.

参考文献/References:

[1] Lee J H, Katoch A, Choi S W, et al. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2015, 7(5) : 3101-3109.
[2] Zhao Jing, Wang Weinan, Liu Yingping, et al. Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance[J]. Sensors and Actuators B: Chemical, 2011, 160(1):604-608.
[3] Yong J S, Chang H S, Anwar M S, et al. Structure and properties of transparent conductive Sb2O5-doped SnO2 thin films fabricated by using pulsed laser deposition[J]. Journal of the Korean Physical Society, 2012, 60(10):1543-1547.
[4] Ding Shujiang, Chen Junsong, Wen Louxiong. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties[J]. Advanced Functional Materials, 2011, 21(21):4120-4125.
[5] Jin Enmei, Park J Y, Gu Haibon, et al. Synthesis of SnO2 hollow fiber using kapok biotemplate for application in dye-sensitized solar cells[J]. Materials Letters, 2015, 159:321-324.
[6] Liu Cheng, Xian Hui, Jiang Zheng, et al. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177:542-552.
[7] 曹慧群, 林碧玉, 张晟诘,等. 水热法制备锰锌铁氧体/碳纳米管磁性材料[J]. 深圳大学学报理工版, 2013, 30(1):12-16.
Cao Huiqun, Lin Biyu, Zhang Shengjie, et al. Hydrothermal synthesis carbon nanotubes coating with Mn0.5Zn0.5Fe2O4 magnetic materials[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1):12-16.(in Chinese)
[8] Xu Jiaqiang, Wang Ding, Qin Lipeng, et al. SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties[J]. Sensors & Actuators B: Chemical, 2009, 137(2):490-495.
[9] Hu Jun, Yin Guilin, Chen Junchen, et al. An olive-shaped SnO2 nanocrystal-based low concentration H2S gas sensor with high sensitivity and selectivity[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20537-20542.
[10] Srivastava A, Lakshmikumar S T, Srivastava A K, et al. Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique[J]. Sensors & Actuators B Chemical, 2007, 126(2):583-587.
[11] Krishnakumar T, Pinna N, Kumari K P, et al. Microwave-assisted synthesis and characterization of tin oxide nanoparticles[J]. Materials Letters, 2008, 62(19):3437-3440.
[12] Yanagimoto T, Yu Y T, Kaneko K. Microstructure and CO gas sensing property of Au/SnO2 core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method[J]. Sensors and Actuators B: Chemical, 2012, 166/167(10):31-35.
[13] Krishnakumar T, Jayaprakash R, Parthibavarman M, et al. Microwave-assisted synthesis and investigation of SnO2 nanoparticles[J]. Materials Letters, 2009, 63(11):896-898.
[14] Jia Yong, Chen Xing, Guo Zheng, et al. In situ growth of tin oxide nanowires, nanobelts, and nanodendrites on the surface of iron-doped tin oxide/multiwalled carbon nanotube nanocomposites[J]. Journal of Physical Chemistry C, 2009, 113(48):20583-20588.
[15] Zhang Dongfeng, Sun Lingdong, Yin Jialu, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods[J]. Advanced Materials, 2003, 15(12):1022-1025.
[16] Cheng Bin, Russell J M, Shi Wensheng, et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J]. Journal of the American Chemical Society, 2004, 126(19):5972-5973.
[17] Leite E R, Giraldi T R, Pontes F M, et al. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature[J]. Applied Physics Letters, 2003, 83(8):1566-1568.
[18] Oweis R J, Albiss B A, Al-Widyan M I, et al. Hybrid zinc oxide nanorods/carbon nanotubes composite for nitrogen dioxide gas sensing[J]. Journal of Electronic Materials, 2014, 43(9):3222-3228.
[19] Phadungdhitidhada S, Thanasanvorakun S, Mangkorntong P, et al. SnO2 nanowires mixed nanodendrites for high ethanol sensor response[J]. Current Applied Physics, 2011, 11(6):1368-1373.
[20] Li Wenqi, Ma Shuyi, Li Yingfeng, et al. Enhanced ethanol sensing performance of hollow ZnO-SnO2 core-shell nanofibers[J]. Sensors & Actuators B Chemical, 2015, 211:392-402.
[21] Li Kunmu, Li Yijing, Lu Mingyen, et al. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties[J]. Advanced Functional Materials, 2009, 19(15):2453-2456.
[22] Liu Qian, Zhang Zhengyu, Li Wenyao, et al. Ethanol gas sensor based on a self-supporting hierarchical SnO2 nanorods array[J]. Crystengcomm, 2015, 17:1800-1804.
[23] Zhou Xiaoming, Fu Wuyou, Yang Haibin, et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process[J]. Materials Chemistry & Physics, 2010, 124(1):614-618.
[24] Liu Bin, Zhang Lihui, Zhao Hua, et al. Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods[J]. Sensors & Actuators B: Chemical, 2012, 173:643-651.
[25] Lee Y C, Huang Hui, Tan O K, et al. Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films[J]. Sensors & Actuators B: Chemical, 2008, 132(1):239-242.
[26] Guan Yue, Wang Dawei, Zhou Xin, et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures[J]. Sensors & Actuators B: Chemical, 2014, 191(2):45-52.
[27] Wang Wenchuang, Tian Yongtao, Li Xinjian, et al. Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres[J]. Applied Surface Science, 2012, 261(1):890-895.
[28] Hwang I S, Choi J K, Woo H S, et al. Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks[J]. ACS Applied Materials & Interfaces, 2011, 3(8):3140-3145.
[29] Li Hui, Xu Jiaqiang, Zhu Yongheng, et al. Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires[J]. Talanta, 2010, 82(2):458-463.
[30] Sun Peng, Yu Yingshuo, Xu Jing, et al. One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading[J]. Sensors & Actuators B: Chemical, 2011, 160(1):244-250.
[31] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview[J]. Sensors & Actuators B: Chemical, 2009, 140(1):319-336.

相似文献/References:

[1]张鸿,陈清武,姚丹,等.用典型植物监测环境中有机氟污染物的可行性[J].深圳大学学报理工版,2013,30(No.1(001-110)):35.[doi:10.3724/SP.J.1249.2013.01035]
 Zhang Hong,Chen Qingwu,Yao Dan,et al.Feasibility to monitor environmental organofluorine pollutants using typical plants[J].Journal of Shenzhen University Science and Engineering,2013,30(2):35.[doi:10.3724/SP.J.1249.2013.01035]
[2]刘国卿,刘德全,周志华.垃圾焚烧炉飞灰和烟气中多氯化萘的分布特征[J].深圳大学学报理工版,2015,32(4):398.[doi:10.3724/SP.J.1249.2015.04398]
 Liu Guoqing,Liu Dequan,and Zhou Zhihua.Polychlorinated naphthalene distribution in fly-ash and flue gas from waste incinerator[J].Journal of Shenzhen University Science and Engineering,2015,32(2):398.[doi:10.3724/SP.J.1249.2015.04398]
[3]吕维忠,黄德贞,罗仲宽,等.钨-氟共掺杂二氧化钒的水热法制备及表征[J].深圳大学学报理工版,2015,32(4):385.[doi:10.3724/SP.J.1249.2015.04385]
 Lyu Weizhong,Huang Dezhen,et al.Hydrothermal synthesis and characterization of tungsten and fluorine co-doped vanadium dioxide[J].Journal of Shenzhen University Science and Engineering,2015,32(2):385.[doi:10.3724/SP.J.1249.2015.04385]
[4]邢建博,岑远,尹雪,等.ZnO及Au-ZnO中空微球的制备及其气敏性研究[J].深圳大学学报理工版,2018,35(3):267.[doi:10.3724/SP.J.1249.2018.03267]
 XING Jianbo,CEN Yuan,YIN Xue,et al.Synthesis and sensitivity of ZnO and Au-ZnO hollow microspheres[J].Journal of Shenzhen University Science and Engineering,2018,35(2):267.[doi:10.3724/SP.J.1249.2018.03267]

备注/Memo

备注/Memo:
Received:2015-11-09;Accepted:2015-12-10
Foundation:National Natural Science Fundation of China (21001051); National Natural Science Fundation of Hainan Province (20152030); National Natural Science Foundation of Shenzhen University (82700002601)
Corresponding author:Associate professor Du Yu. E-mail: duyu@szu.edu.cn; Associate professor Pan Qinhe. E-mail: panqinhe@163.com
Citation:Li Qun, Huang Jinyu, Du Yu, et al.Highly sensitive ethanol sensor based on SnO2 nanorods synthesized by microwave-assisted hydrothermal method [J]. Journal of Shenzhen University Science and Engineering, 2016, 33(2): 147-153.(in Chinese)
基金项目:国家自然科学基金资助项目(21001051);海南省自然科学基金资助项目(20152030); 深圳市高端人才科研启动基金资助项目(82700002601)
作者简介:李群(1988—),女,海南大学硕士研究生.E-mail:liqun1g@gmail.com
引文:李群,黄金玉,杜宇,等.微波水热法构筑高性能SnO2基乙醇传感器[J]. 深圳大学学报理工版,2016,33(2):147-153.
更新日期/Last Update: 2016-03-04