[1]张明辉,肖凯,卢红阳,等.基于加权双层Bregman及图结构正则化的磁共振成像[J].深圳大学学报理工版,2016,33(2):119-126.[doi:10.3724/SP.J.1249.2016.02119]
 Zhang Minghui,Xiao Kai,Lu Hongyang,et al.Weighted two-level Bregman method with graph regularized sparse coding for MRI reconstruction[J].Journal of Shenzhen University Science and Engineering,2016,33(2):119-126.[doi:10.3724/SP.J.1249.2016.02119]
点击复制

基于加权双层Bregman及图结构正则化的磁共振成像()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第2期
页码:
119-126
栏目:
电子与信息科学
出版日期:
2016-03-20

文章信息/Info

Title:
Weighted two-level Bregman method with graph regularized sparse coding for MRI reconstruction
文章编号:
201602002
作者:
张明辉肖凯卢红阳徐晓玲
南昌大学信息工程学院,江西南昌330031
Author(s):
Zhang Minghui Xiao Kai Lu Hongyang and Xu Xiaoling
School of Information Engineering, Nanchang University, Nanchang 330031, Jiangxi Province, P.R.China
关键词:
图像处理磁共振成像压缩感知图结构正则化稀疏表示字典学习加权双层伯格曼迭代交替方向法
Keywords:
image processing magnetic resonance imaging compressed sensing graph regularized sparse coding dictionary learning weighted Bregman iterative method alternating direction method
分类号:
N 34
DOI:
10.3724/SP.J.1249.2016.02119
文献标志码:
A
摘要:
针对磁共振图像(magnetic resonance imaging, MRI)重建质量的问题,提出一种基于加权双层Bregman字典学习方法和图结构正则化稀疏表示的新算法.该算法中,迭代重加权最小l1和图结构正则化稀疏表示模型是被合并到双层Bregman字典学习方法中.加权双层Breman的字典学习方法在外层迭代中增强K空间抽样数据的约束性,在内层迭代中解决Lp的优化.而图结构正则化稀疏表示方法具备捕获图像结构细节的能力,所以从较高的欠采样数据中能完成精确重建.此外,在内层迭代中,重加权最小l1和图结构正则化稀疏表示使算法能快速地趋于收敛.实验结果表明,所提出的算法可有效恢复MRI图像,其峰值信噪比和高频错误的值都优于基于压缩感知的字典学习方法和基于双层Bregman的自适应字典学习方法.
Abstract:
To improve the quality of magnetic resonance imaging, we propose a new dictionary learning algorithm integrating the weighted two-level Bregman and graph regularized sparse coding. We incorporate the iteratively reweighted l1-minimization and graph regularized sparse coding model into the two-level Bregman method with dictionary updating (TBMDU). The weighted two-level Bregman iterative procedure enforces the constraints of K-space sampled data in the outer-level and solves Lp-optimization in the inner-level. The graph regularized sparse coding model has great capacity in capturing structural details of images and, consequently, enables accurate reconstruction from highly under-sampled data. Furthermore, the proposed algorithm is able to converge with a relatively small number of iterations due to the reweighted l1-minimization iteration and graph regularized sparse coding applied in the inner minimization. Simulation results demonstrate that the proposed algorithm can reconstruct MRI images efficiently and outperforms some current approaches, such as dictionary learning for compressed sensing and two-level Bregman method with dictionary updating, in terms of the peak signal-to-noise ratio and the norm value of high-frequency error.

参考文献/References:

[1] Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
[2] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3] Wang Yanhua, Ying L. Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary[J]. IEEE transactions on Biomedical Engineering, 2014, 61(4): 1109-1120.
[4] Caballero J, Price A N, Rueckert D, et al. Dictionary learning and time sparsity for dynamic MR data reconstruction[J]. IEEE Transactions on Medical Imaging, 2014, 33(4): 979-994
[5] Ma Shiqian, Yin Wotao, Zhang Yin, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]// IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008:1-8.
[6] Wong A, Mishra A, Fieguth P, et al. Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3): 743-752.
[7] Lingala S G, Jacob M. Blind compressive sensing dynamic MRI[J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145.
[8] Zhang Y, Dong Z, Wang G J S. An improved reconstruction method for CS-MRI based on exponential wavelet transform and iterative shrinkage/thresholding algorithm[J]. Journal of Electromagnetic Waves & Applications, 2014, 28(18): 2327-2338.
[9] Selesnick I W, Chen P Y. Total variation denoising with overlapping group sparsity[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver, Canada: IEEE, 2013: 5696-5700.
[10] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenom, 1992, 60(1/2/3/4): 259-268.
[11] Abraham A, Dohmatob E, Thirion B, et al. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning[J]. Medical Image Computing and Computer-Assisted Intervention, 2013, 16(2): 607-615.
[12] Qu Xiaobo, Guo Di, Ning Bende, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977.
[13] Guerquin-Kern M, Haberlin M, Pruessmann K, et al. A fast wavelet-based reconstruction method for magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1649-1660.
[14] Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sensing using a Gaussian scale mixture model[J]. IEEE Transactions on Image Processing, 2012, 21(6): 3102-3108.
[15] Qiu Chenlu, Lu Wei, Vaswani N. Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing[C]// IEEE Internal Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE, 2009: 393-396.
[16] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041.
[17] Liu Qiegen, Wang Shanshan, Yang Kun, et al. Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290-1301.
[18] Liu Qiegen, Wang Shanshan, Luo Jianhua. A novel predual dictionary learning algorithm[J]. Journal of Visual Communication Image Representation, 2012, 23(1): 182-193.
[19] Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905.
[20] Zheng Miao, Bu Jiajun, Chen Chun, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.

相似文献/References:

[1]张 敏,阮双琛,杨 珺,等.连续太赫兹波实时透射成像实验研究[J].深圳大学学报理工版,2007,24(4):384.
 ZHANG Min,RUAN Shuang-chen,YANG Jun,et al.Experimental study of continuous-wave terahertz radiation real-time transmission imaging[J].Journal of Shenzhen University Science and Engineering,2007,24(2):384.
[2]胡涛,郭宝平,郭轩.基于游程分析轮廓提取算法的改进[J].深圳大学学报理工版,2009,26(4):405.
 HU Tao,GUO Bao-ping,and GUO Xuan.An improved run-based boundary extraction algorithm[J].Journal of Shenzhen University Science and Engineering,2009,26(2):405.
[3]胡媛媛,牛夏牧.基于视觉阈值的结构相似度图像质量评价算法[J].深圳大学学报理工版,2010,27(2):185.
 HU Yuan-yuan and NIU Xia-mu.Image quality assessment based on human visibility threshold theory and structural similarity[J].Journal of Shenzhen University Science and Engineering,2010,27(2):185.
[4]宋远佳,张炜,杨正伟,等.固体火箭发动机壳体脱黏缺陷的热波检测[J].深圳大学学报理工版,2012,29(No.3(189-282)):252.[doi:10.3724/SP.J.1249.2012.03252]
 SONG Yuan-jia,ZHANG Wei,YANG Zheng-wei,et al.Debond defect detection in shell of solid rocket motor by thermal wave nondestructive testing[J].Journal of Shenzhen University Science and Engineering,2012,29(2):252.[doi:10.3724/SP.J.1249.2012.03252]
[5]黄宗福,孙刚,陈曾平. 大视场空间目标光电探测起伏背景抑制算法[J].深圳大学学报理工版,2012,29(No.6(471-580)):471.[doi:10.3724/SP.J.1249.2012.06471]
 HUANG Zong-fu,SUN Gang,and CHEN Zeng-ping.A background clutter suppression algorithm for space target detection in wide field-of-view opto-electronic observation[J].Journal of Shenzhen University Science and Engineering,2012,29(2):471.[doi:10.3724/SP.J.1249.2012.06471]
[6]吴庆阳,曾祥军,黄锦辉,等.数字印模口内三维扫描技术研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):60.[doi:10.3724/SP.J.1249.2013.01060]
 Wu Qingyang,Zeng Xiangjun,Huang Jinhui,et al.Study on digital impression for intraoral 3D scanning[J].Journal of Shenzhen University Science and Engineering,2013,30(2):60.[doi:10.3724/SP.J.1249.2013.01060]
[7]周山雪,谢国喜.基于多通道图像相关性的改进GRAPPA算法[J].深圳大学学报理工版,2013,30(No.2(111-220)):162.[doi:10.3724/SP.J.1249.2013.02162]
 Zhou Shanxue and Xie Guoxi.An improved GRAPPA algorithm based on the correlation between multi-coil images[J].Journal of Shenzhen University Science and Engineering,2013,30(2):162.[doi:10.3724/SP.J.1249.2013.02162]
[8]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
[9]李霞,李富生,陈园琴.基于视觉灵敏度与DCT系数的显著性检测[J].深圳大学学报理工版,2014,31(5):464.[doi:10.3724/SP.J.1249.2014.05464]
 Li Xia,Li Fusheng,and Chen Yuanqin.Saliency detection model based on human visual sensitivity and DCT coefficients[J].Journal of Shenzhen University Science and Engineering,2014,31(2):464.[doi:10.3724/SP.J.1249.2014.05464]
[10]李璟,倪东,李胜利,等.超声图像中胎儿头围的自动测量[J].深圳大学学报理工版,2014,31(5):455.[doi:10.3724/SP.J.1249.2014.05455]
 Li Jing,Ni Dong,Li Shengli,et al.The automatic ultrasound measurement of fetal head circumference[J].Journal of Shenzhen University Science and Engineering,2014,31(2):455.[doi:10.3724/SP.J.1249.2014.05455]

备注/Memo

备注/Memo:
Received:2015-12-10;Accepted:2016-02-16
Foundation:National Natural Science Foundation of China (61362001); Natural Science Foundation of Jiangxi Province (20151BAB207007)
Corresponding author:Professor Zhang Minghui. E-mail: zhangmh3529@163.com
Citation:Zhang Minghui,Xiao Kai,Lu Hongyang,et al. Weighted two-level bregman method with graph regularized sparse coding for MRI reconstruction[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(2): 119-126.(in Chinese)
基金项目:国家自然科学基金资助项目(61362001);江西省自然科学基金资助项目 (20151BAB207007)
作者简介:张明辉(1963—),男,南昌大学教授.研究方向:压缩感知,磁共振成像.E-mail: zhangmh3529@163.com
引文:张明辉,肖凯,卢红阳,等.基于加权双层Bregman及图结构正则化的磁共振成像[J]. 深圳大学学报理工版,2016,33(2):119-126.
更新日期/Last Update: 2016-03-04