[1]毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96-101.[doi:10.3724/SP.J.1249.2016.01096]
 Mao Beixing and Wang Zhanwei.Finite-time synchronization control of a class of fractional-order complex network systems[J].Journal of Shenzhen University Science and Engineering,2016,33(1):96-101.[doi:10.3724/SP.J.1249.2016.01096]
点击复制

一类分数阶复杂网络系统的有限时间同步控制()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第1期
页码:
96-101
栏目:
数学与应用数学
出版日期:
2016-01-20

文章信息/Info

Title:
Finite-time synchronization control of a class of fractional-order complex network systems
文章编号:
201601013
作者:
毛北行王战伟
郑州航空工业管理学院数理系,河南郑州 450015
Author(s):
Mao Beixing and Wang Zhanwei
Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, Henan Province, P.R.China
关键词:
分数阶系统有限时间混沌同步复杂网络误差系统控制
Keywords:
fractional order systems finite-time chaos synchronization complex network error system control
分类号:
O 482.4
DOI:
10.3724/SP.J.1249.2016.01096
文献标志码:
A
摘要:
研究一类分数阶复杂网络系统的有限时间混沌同步问题,基于Lyapunov稳定性理论和分数阶微积分的相关理论,给出控制律的设计,得到了系统取得有限时间同步的充分条件,估算了系统取得同步所需的时间.研究结果表明,一定条件下分数阶复杂网络混沌系统是有限时间同步的,仿真结果验证了方法的可行性.
Abstract:
Based on the Lyapunov stability theory and fractional order system theory, we investigate the finite-time chaos synchronization problem of a class of fractional order complex network systems, propose a control law and the sufficient conditions for the synchronization of systems, and estimate the time for the synchronization of systems. It is shown that the fractional order complex network systems are finite-time synchronized under a certain condition. Numerical simulations are performed to verify the effectiveness of the proposed method.

参考文献/References:

[1] 余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J]. 北京航空航天大学学报,2014,40(9):1276-1280.
Yu Mingzhe,Zhang You’an. Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280.(in Chinese)
[2] 严胜利,张昭晗. 一类不确定分数阶混沌系统的同步控制[J]. 系统仿真技术,2013,9(4):366-370.
Yan Shengli, Zhang Zhaohan. Synchronization control of a class of uncertain fractional-order chaotic systems[J]. System Simulation Technology, 2013, 9(4):366-370.(in Chinese)
[3] 潘光,魏静. 一种分数阶混沌系统同步的只适应滑模控制器设计[J]. 物理学报,2015,64(4):5051-5057.
Pan Guang, Wei Jing. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems[J]. Acta Physica Sinica, 2015, 64(4):5051-5057.(in Chinese)
[4] 徐瑞萍,高存臣. 基于线性控制的一类金融系统的混沌同步[J]. 控制工程,2014,21(1):18-22.
Xu Ruiping, Gao Cunchen. Chaos synchronization of a financial systems based on linear control[J]. Control Engineering of China, 2014, 21(1):18-22.(in Chinese)
[5] 张云雷,吴超然. 基于反馈控制的分数阶时滞神经网络的同步[J]. 重庆工商大学学报自然科学版,2014,31(12):49-53.
Zhang Yunlei, Wu Chaoran. Synchronization of fractional-order neural network with delay based on feedback control[J]. Journal of Chongqing Technology and Business University Natural Science Edition, 2014, 31(12): 49-53.(in Chinese)
[6] 辛道义,刘允刚. 非线性系统有限时间稳定性分析与控制设计[J]. 山东大学学报工学版,2011,41(2):119-125.
Xin Daoyi, Liu Yungang. Analysis of finite-time stability and design of control of nonlinear systems[J]. Journal of Shandong University Engineering Science, 2011, 41(2): 119-125.(in Chinese)
[7] 杨仁明,王玉振. 一类非线性时滞系统的有限时间稳定性[J]. 山东大学学报工学版,2012,42(2):36-43.
Yang Renming, Wang Yuzhen. The finite-time stability of a class of time-delay systems[J]. Journal of Shandong University Engineering Edition, 2012, 42(2):36-43.(in Chinese)
[8] Mei Jun, Jiang Minghui, Wang Jun. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 999-1015.
[9] 毛北行,李巧利. Lurie混沌系统的有限时间同步问题[J]. 四川师范大学学报自然科学版,2014,37(4):497-500.
Mao Beixing, Li Qiaoli The finite-time synchronization of Lurie chaos systems[J]. Journal of Sichuan Normal University Natural Science, 2014, 37(4): 497-500.(in Chinese)
[10] Mohammad P A. Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory[J]. Journal of Computation and Nonlinear Dynamics, 2012, 7(2): 021010.

备注/Memo

备注/Memo:
Received:2015-05-17;Accepted:2015-09-23
Foundation:National Natural Science Foundation of China(11404291); Key Scientific Research Project of Colleges and Universities of Henan Province(15B110011)
Corresponding author:Associate professor Mao Beixing. E-mail: bxmao329@163.com
Citation:Mao Beixing, Wang Zhanwei. Finite-time synchronization control of a class of fractional-order complex network systems[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 96-101.(in Chinese)
基金项目:国家自然科学基金资助项目(11404291);河南省高等学校重点科研资助项目(15B110011)
作者简介:毛北行 (1976—),男,郑州航空工业管理学院副教授. 研究方向:复杂网络与混沌同步. E-mail: bxmao329@163.com
引文:毛北行,王战伟. 一类分数阶复杂网络系统的有限时间同步控制[J]. 深圳大学学报理工版,2016,33(1):96-101.
更新日期/Last Update: 2016-01-14