[1]曾文进,赵春燕,李咏华,等.银粉含量对印刷型聚合物发光器件的影响.(英文)[J].深圳大学学报理工版,2016,33(1):18-24.[doi:10.3724/SP.J.1249.2016.01018]
 Zeng Wenjin,Zhao Chunyan,Li Yonghua,et al.Effect of Ag content on the performance of cathode-printed PLEDs[J].Journal of Shenzhen University Science and Engineering,2016,33(1):18-24.[doi:10.3724/SP.J.1249.2016.01018]
点击复制

银粉含量对印刷型聚合物发光器件的影响.(英文)()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第1期
页码:
18-24
栏目:
化学与化工
出版日期:
2016-01-20

文章信息/Info

Title:
Effect of Ag content on the performance of cathode-printed PLEDs
文章编号:
201601003
作者:
曾文进1赵春燕1李咏华1李冬梅1李雪1张赤2彭俊彪2赖文勇1牛巧利1闵永刚1
1)南京邮电大学材料学院,江苏南京 210023
2)华南理工大学发光材料与器件教育部重点实验室,广东广州 510641
Author(s):
Zeng Wenjin1 Zhao Chunyan1 Li Yonghua1 Li Dongmei1 Li Xue1 Zhang Chi2 Peng Junbiao2 Lai Wenyong1 Niu Qiaoli1 and Min Yonggang1
1) School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, P.R.China
2) State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong Province, P.R.China
关键词:
化学物理学聚合物发光二极管导电银胶刮涂工艺印刷式电极相界面电阻
Keywords:
chemical physics polymer light-emitting diodes Ag paste blade-coating printed cathode interface resistance
分类号:
O 472+.8
DOI:
10.3724/SP.J.1249.2016.01018
文献标志码:
A
摘要:
研究银粉含量和印刷阴极型聚合物发光二极管(polymer light-emitting diode,PLED)之间的构-效关系.实验比较两种不同银粉含量的导电银胶,通过刮涂法制备PLED的阴极.两种银胶的胶体基底相同,区别在于银粉颗粒的含量不同.实验研究银粉的分布状态与器件性能之间的关系.结果表明,银胶中的银粉含量越高,器件的性能越好,主要体现在驱动电压更低、电流密度更大和量子效率更高.偏光显微镜图片显示,提高银胶中银粉的含量,可以优化银粉在印刷阴极/电子传输层之间的分布.通过银粉覆盖率的数据模拟也证明了这一点.为确定银粉覆盖率的提高能够优化器件效率,在器件中通过蒸镀添加薄银层.结果表明,由于薄银层的插入,器件的驱动电压随之下降,器件性能也得到优化.因此,在印刷型的PLED器件中,提高银胶中银粉的含量可以有效减低载流子的注入势垒,达到器件优化的效果.
Abstract:
The structure-activity relationship of the cathode-printed polymer light-emitting diodes (PLEDs) is investigated. Two kinds of Ag pastes on the same paste resin but with different content of Ag particles were applied to prepare the cathodes of PLEDs by the blade-coating. The relationship between the distribution of Ag particles and the performance of PLEDs was investigated. The results indicate that the paste with a higher silver content exhibites better performances, including a lower driving voltage, higher current density and quantum efficiency. In-situ polarized microscopic images reveal that a higher silver content in the paste could lead to a better distribution of Ag at the interface of the cathode and the electron-transporting layer (ETL), which can also be proved by the simulation of the coverage percentage. A thin layer of Ag was inserted by evaporation between the ETL and Ag-paste cathode, which is regarded as equivalent to the increase of Ag coverage at the interface. As expected, the driving voltage of the devices was reduced and the performance improved after the thin layer of thermally-deposited Ag was inserted. Therefore, large Ag contents at the interface benefits the performance of PLED due to the low injection barriers.

参考文献/References:

[1] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers[J]. Nature, 1999, 397(6715): 121-128.
[2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.
[3] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters, 1991, 58(18):1982-1984.
[4] Wu Junbo, Becerril H A, Bao Zhenan, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302.
[5] Zhong Chengmei, Duan Chunhui, Huang Fei, et al. Materials and devices toward fully solution processable organic light-emitting diodes[J]. Chemistry of Materials, 2011, 23(3): 326-340.
[6] Zhang Lianjie, Hu Sujun, Chen Junwu, et al. A series of energy-transfer copolymers derived from fluorene and 4,7-dithienylbenzotriazole for high efficiency yellow, orange, and white light-emitting diodes[J]. Advanced Functional Materials, 2011, 21(19): 3760-3769.
[7] Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices[J]. Chemical Reviews, 2009, 109(3):897-1091.
[8] Kamtekar K T, Monkman A P, Bryce M R, et al. Recent advances in white organic light-emitting materials and devices (WOLEDs)[J]. Advanced Materials, 2010, 22(5): 572-582.
[9] Farinola G M, Ragnia R. Electroluminescent materials for white organic light emitting diodes[J]. Chemical Society Reviews, 2011, 40(7): 3467-3482.
[10] Rozanski L J, Castaldelli E, Sam F L M, et al. Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes[J]. Journal of Materials Chemistry C, 2013, 13(7): 3347-3352.
[11] Hu Liangbing, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963.
[12] Huang Fei,Cheng Yenju,Zhang Yong,et al.Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes[J]. Journal of Materials Chemistry, 2008, 18(38): 4495-4509.
[13] Huang Fei, Wu Hongbin, Cao Yong, et al. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices[J]. Chemical Society Reviews, 2010, 39(7): 2500-2521.
[14] Ma Wanli, Iyer P K, Gong Xiong, et al. Water/methanol soluble conjugated copolymer as an electron transport layer in polymer light-emitting diodes[J]. Advanced Materials, 2005, 17(3): 274-277.
[15] Wu Hongbin, Huang Fei, Mo Yueqi, et al. Efficient elctron injection from a bilayer cathode consisting of aluminum and alchole-/water-soluble conjugated polymers[J]. Advanced Materials, 2004, 16(20): 1826-1830.
[16] Hoven C V, Garcia A, Bazan G C, et al. Recent applications of conjugated polyelectrolytes in optoelectronic devices[J]. Advanced Materials, 2008, 20(20): 3793-3810.
[17] Wu Hongbin, Huang Fei, Peng Junbiao, et al. High-efficiency electron injection cathode of Au for polymer light-emitting devices[J]. Organic Electronics, 2005, 6(3):118-128.
[18] Zhong Chengmei, Liu Shengjian, Huang Fei, et al. Highly efficient electron injection from indium tin oxide/cross-linkable amino-functionalized polyfluorene interface in inverted organic light emitting devices[J]. Chemistry of Materials, 2011, 23(21):4870-4876.
[19] Zeng Wenjin, Wu Hongbin, Zhang Chi, et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste[J]. Advanced Materials, 2007, 19(6): 810-814.
[20] Zheng Hua, Zheng Yina, Liu Nanliu, et al. All-solution processed polymer light-emitting diode displays[J]. Nature Communications, 2013, 4(7): 1971-1978.
[21] Mo Yueqi, Huang Jian, Jiang Jiaxin, et al. Influence of traces of water on the synthesis and electrolumi-nescence propties of poly(2-methoxy,5-(2′-ethylhexylo-xy)-1,4-phenylene vinylene)[J]. Chinese Journal of Polymer Science, 2002, 20(5): 461-465.
[22] Huang Fei, Hou Lintao,Wu Hongbin, et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors[J]. Journal of the American Chemical Society, 2004, 126(31): 9845-9853.
[23] Vinod P N. Specific contact resistance and metallurgical process of the silver-based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 730-736.
[24] Kulushich G, Bazer-Bachi B, Takahashi T, et al. Contact formation on 100 Ω/sq emitter by screen printed silver paste[J]. Energy Procedia, 2012, 27: 485-490.
[25] Strümpler R, Glatz-Reichenbach J. Conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346.
[26] Parker I D, Glatz-Reichenbach J. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. Journal of Applied Physics, 1994, 75(3): 1656-1660.
[27] Kumar A, Srivastava R, Tyagi P, et al. Effect of doping of 8-hydroxyquinolinatolithium on electron transport in tris(8-hydroxyquinolinato) aluminum[J]. Journal of Applied Physics, 2011, 109(11): 114511.

备注/Memo

备注/Memo:
Received:2015-06-14;Accepted:2015-11-13
Foundation:National Natural Science Foundation of China (61504066); Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430024); Natural Science Foundation of Jiangsu Province (BK20150838)
Corresponding author:Professor Min Yonggang. E-mail: iamygmin@njupt.edu.cn
Citation:Zeng Wenjin, Zhao Chunyan, Li Yonghua, et al. Effect of Ag content on the performance of cathode-printed PLEDs[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 18-24.
基金项目:国家自然科学基金资助项目 (61504066);江苏省高校自然科学研究资助项目(15KJB430024);江苏省自然科学基金资助项目 (BK20150838)
作者简介:曾文进(1981—),男,南京邮电大学讲师、博士.研究方向:有机光电器件.E-mail:iamwjzeng@njupt.edu.cn
赵春燕(1990—),女,南京邮电大学硕士研究生.研究方向:有机光电器件. E-mail:1053179147@qq.com
曾文进、赵春燕为共同第一作者.
引文:曾文进,赵春燕,李咏华,等.银粉含量对印刷型聚合物发光器件的影响[J]. 深圳大学学报理工版,2016,33(1):18-24.(英文版)
更新日期/Last Update: 2016-01-14