[1]蔡兴民,苏小强,叶凡,等.AlGaN纳米线的化学气相沉积制备及表征[J].深圳大学学报理工版,2015,32(6):638-644.[doi:10.3724/SP.J.1249.201]
 Cai Xingmin,Su Xiaoqiang,Ye Fan,et al.Chemical vapor deposition growth and characterization of AlGaN nanowires[J].Journal of Shenzhen University Science and Engineering,2015,32(6):638-644.[doi:10.3724/SP.J.1249.201]
点击复制

AlGaN纳米线的化学气相沉积制备及表征()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第6期
页码:
638-644
栏目:
材料科学
出版日期:
2015-11-23

文章信息/Info

Title:
Chemical vapor deposition growth and characterization of AlGaN nanowires
文章编号:
201506012
作者:
蔡兴民苏小强叶凡王欢梁广兴郑壮豪罗景庭张东平范平
深圳大学物理科学与技术学院,深圳市传感器重点实验室,深圳 518060
Author(s):
Cai Xingmin Su Xiaoqiang Ye Fan Wang Huan Liang Guangxing Zheng Zhuanghao Luo Jingting Zhang Dongping and Fan Ping
College of Physics Science and Technology, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
无机非金属材料低维材料化合物半导体纳米线化学气相沉积光致发光
Keywords:
nonorganic and nonmetallic materials low dimensional materials compound semiconductor nanowire chemical vapor deposition photoluminescence
分类号:
O 782;O 472
DOI:
10.3724/SP.J.1249.201
文献标志码:
A
摘要:
以Ga、金属Al颗粒或AlCl3·6H2O粉末及NH3为原料,利用化学气相沉积法生长AlxGa1-xN纳米线. 研究发现,气体的流速、基底有无催化剂、原材料及生长温度等都对其生长有影响. 在总流量固定的前提下,较高的NH3流量比会在基底上生长出致密的AlxGa1-xN纳米线. 同样生长条件下,在未经催化剂处理的Si基底表面没有观察到纳米线. 对于蓝宝石基底,催化剂存在与否都会生长出AlxGa1-xN纳米线. 研究表明,原材料对于AlxGa1-xN纳米线的生长和性能都有影响. 相比于AlCl3,以金属Al颗粒作为Al源,AlxGa1-xN纳米线能够在较大的温度范围内生长,且有较好的光致发光特性.
Abstract:
This paper reports the chemical vapor deposition growth of AlxGa1-xN nanowires with Ga, metallic Al particles or AlCl3·6H2O powders and NH3 as raw materials. It is found that the growth is mainly influenced by gas flow rates, substrates with or without catalysts, the rawmaterials, and the growth temperatures etc. If the total flow rate is fixed, denser AlxGa1-xN nanowires can be obtained with larger NH3 flow rate. Under same growth conditions, nanowires cannot be observed on the Si substrate if no catalysts are used, but catalysts are not necessary if sapphire substrate is used. Additionally, the raw materials affect the growth and properties of AlxGa1-xN nanowires. As compared with AlCl3 as the starting Al source, AlxGa1-xN nanowires can be fabricated in a wider temperature range by using the metallic Al particles as Al source. Moreover, the prepared AlxGa1-xN nanowires have better photoluminescence.

参考文献/References:

[1] Ye Baisong, Yuan Shuigang, Wang Jiqiang, et al. Design of a portable UV Camera for Corona Detection[J]. Infrared, 2013,34(4):24-28.(in Chinese)
叶柏松,袁水刚,王继强,等. 一种便携式电晕检测紫外相机的设计[J]. 红外,2013,34(4):24-28.
[2] Ni Jinyu, Dong Xun, Zhou Jianjun, et al. AlGaN/GaN HEMT on Si substrate with Al-content step-graded AlGaN transition layers [J]. Research & Progress of Solid State Electronics, 2011,31(6):527-531.(in Chinese)
倪金玉,董逊,周建军,等. 含有Al组分阶变AIGaN过渡层的Si基AlGaN/GaN HEMT [J]. 固体电子学研究与进展, 2011,31(6):527-531.
[3] Huang Yimin, Li Xiangyang, Gong Haimei. Inftared and laser engineering [J]2007,36(S):209-213.(in Chinese)
黄翌敏,李向阳,龚海梅. AIGaN紫外探测器及其应用[J].红外与激光工程,2007,36(S):209-213.
[4] Chen Tangsheng, Jiao Gang, Xue Fangshi, et al. Undoped AlGaN/GaN microwave power HEMT[J]. Chinese Journal of Semiconductors, 2004,25(1):69-74.(in Chinese)
陈堂胜,焦刚,薛舫时,等. 非掺杂AlGaN/GaN 微波功率HEMT[J]. 半导体学报,2004,25(1):69-74.
[5] Pierret A, Bougerol C, Murcia-Mascaros S, et al. Growth, structural and optical properties of AlGaN nanowires in the whole composition range[J]. Nanotechnology, 2013, 24(1): 115704-1-115704-9.
[6] Allah R F, Ben T, Songmuang R, et al. Imaging and analysis by transmission electron microscopy of the spontaneous formation of Al-rich shell structure in AlxGa1-xN/GaN nanowires[J]. Applied Physics Express, 2012, 5(4): 045002-1-045002-3.
[7] Lari L, Walther T, Gass M H, et al. Direct observation by transmission electron microscopy of the influence of Ni catalyst-seeds on the growth of GaN-AlGaN axial heterostructure nanowires[J]. Journal of Crystal Growth, 2011, 327(1): 27-34.
[8] Sato T, Oikawa T, Hasegawa H, et al. Selective molecular beam epitaxy growth of size- and position-controlled GaN/AlGaN nanowires on nonplanar(0001)substrates and its growth mechanism[J]. Journal of Vacuum Science and Technology B, 2006, 24(4): 2087-2092.
[9] Pierret A, Bougerol C, Gayral B, et al. Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence[J]. Nanotechnology, 2013, 24(30): 305703-1-305703-7.
[10] Park Y S, Hwang B R, Lee J C, et al. Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy[J]. Nanotechnology, 2006, 17(18): 4640-4643.
[11] Ristic' J, Sánchez-García M A, Calleja E, et al. AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization[J]. Physical Status Solidi A, 2002, 192(1): 60-66.
[12] Pierret A, Bougerol C, Den Hertog M, et al. Structural and optical properties of AlxGa1-xN nanowires[J]. Physical Status Solidi RRL, 2013, 7(10): 868-873.
[13] Jacopin G, Rigutti L, Bellei S, et al. Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires[J]. Nanotechnology, 2012, 23(32): 325701-1-325701-6.
[14] Su J, Gherasimova M, Cui G, et al. Growth of AlGaN nanowires by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2005, 87(18):183108-1-183108-3.
[15] Baird L, Ong C P, Adam Cole R, et al. Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires[J]. Applied Physics Letters, 2011, 98(13):132104-1-132104-3.
[16] Simpkins B S, Mastro M A, Eddy C R, et al. Space-charge-limited currents and trap characterization in coaxial AlGaN/GaN nanowires[J]. Journal of Applied Physics, 2011, 110(4): 044303-1-044303-4.
[17] He Chengyu, Wu Qiang, Wang Xizhang, et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range[J]. ACS Nano, 2011, 5(2): 1291-1293.
[18] Chen Fei, Ji Xiaohong, Lu Zhenya, et al. Structural and raman properties of compositionally tunable AlxGa1-xN (0.66 ≤ x≤ 1)nanowires[J]. Materials Science and Engineering B, 2014, 183(5): 24-28.
[19] Zhou Shaomin. Fabrication and PL of Al-doped gallium nitride nanowires[J]. Physics Letters A, 2006, 357(4/5): 374-377.
[20] Hong L, Liu Z, Zhang Xitian, et al. Self-catalytic growth of single-phase AlGaN alloy nanowires by chemical vapor deposition[J]. Applied Physics Letters, 2006, 89(19):193105-1-193105-3.
[21] Gaevski M E, Sun Wenhong, Yang Jinwei, et al. Non-catalyst growth and characterization of α-plane AlGaN nanowires[J]. Physical Status Solidi A, 2006, 203(7):1696-1699.
[22] Wang Xuebin, Song Jinhui, Zhang Fan, et al. Electricity generation based on one-dimensional group-III nitride nanomaterials[J]. Advanced Materials, 2010, 22(19): 2155-2158.
[23] Choi Heon-Jin, Johnson J C, He Rongrui, et al. Self-organized GaN quantum wire UV lasers[J]. Journal of Physics and Chemistry B, 2003, 107(34): 8721-8725.
[24] Daudin B, Feuillet G , Mula G, et al. Epitaxial growth of GaN, AlN and InN: 2D/3D transition and surfactant effects[J]. Physical Status Solidi A, 1999, 176(1): 621-627.

备注/Memo

备注/Memo:
Received:2015-07-14;Accepted:2015-09-24
Foundation:National Natural Science Foundation of China(61204010);Shenzhen Basic Research Project(JCYJ2012061310212 6217)
Corresponding author:Associated Professor Ye Fan. E-mail: yefan@szu.edu.cn
Citation:Cai Xingmin,Su Xiaoqiang,Ye Fan,et al.Chemical vapor deposition growth and characterization of AlGaN nanowires[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 638-644.(in Chinese)
基金项目:国家自然科学基金资助项目(61204010);深圳市基础研究资助项目(CYJ20120613102126217)
作者简介:蔡兴民(1974—),男(汉族),湖北省麻城市人, 深圳大学副教授.E-mail:caixm@szu.edu.cn
引文:蔡兴民,苏小强,叶凡,等. AlGaN纳米线的化学气相沉积制备及表征[J]. 深圳大学学报理工版,2015,32(6):638-644.
更新日期/Last Update: 2015-11-06