参考文献/References:
[1] Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Molecular & General Genetics, 1993, 238(1/2): 17-25.
[2] Hattori J, Boutilier K A, Campagne M M L, et al. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures[J]. Molecular & General Genetics: MGG, 1998, 259(4): 424-428.
[3] Tang Yulin, Cao Yan, Ou Zhonghua, et al. Regulatable gene expression controlled by the promoter of Sali3-2 under different abiotic stresses[J]. Journal of Shenzhen University Science and Engineering, 2012,29(1):73-79. (in Chinese)
唐玉林, 曹雁, 欧忠华, 等. 非生物胁迫因子对大豆Sali3-2基因的调控作用[J]. 深圳大学学报理工版, 2012, 29(1): 73-79.
[4] Harshavardhan V T, Son L V, Seiler C, et al. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance[J]. PlOS One, 2014, 9(10): e110065.
[5] Tang Yulin, Cao Yan, Gao Zhan, et al. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses[J]. PlOS One, 2014, 9(6): e98830.
[6] Tomas Matus J, Aquea F, Espinoza C, et al. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses[J]. PLOS One, 2014, 9(10): e110372.
[7] Sorensen H P, Mortensen K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4(1):1-8.
[8] Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications[J]. Biotechnology Journal, 2012, 7(5): 620-634.
[9] Dümmler A, Lawrence A M, De Marco A. Simplified screening for the detection of soluble fusion constructs expressed in E.coli using a modular set of vectors[J].Microbial Cell Factories, 2005, 4(34):1-10.
[10] Malakhov M P, Mattern M R, Malakhova O A, et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins[J]. Journal of Structural and Functional Genomics, 2004, 5(1/2): 75-86.
[11] Zhang Licong, Li Xiaodan, Wei Dandan, et al. Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(10): 1369-1376.
[12] Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues[J]. Analytical Biochemistry, 1987, 163(1): 16-20.
[13] Hu Wei, Fu Qiang, Zhu Pingchuan, et al. An optimized method of protein in-gel digestion for mass spectrometry identification[J]. Journal of Southern Agriculture, 2011,42(7):802-805.(in Chinese)
胡炜, 付强, 朱平川, 等. 用于质谱鉴定蛋白质胶内酶解方法的优化[J]. 南方农业学报, 2011, 42(7): 802-805.
[14] Wu Shanshan, Zhu Yun, Chen Shanshan, et al. Progress in fusion tags and its applications in protein soluble expression[J].Chemical Industry and Engineering Progress, 2014,33(4):993-998.(in Chinese)
吴珊珊,朱芸,陈珊珊,等. 融合标签在蛋白质可溶性表达中的应用进展[J]. 化工进展, 2014, 33(4): 993-998.
[15] Li Juan, Liu Wen, Xiao Lei, et al. Two strategies for efficient expression of soluble recombinant human FGF-21[J].Journal of East China Normal University Natural Science, 2012(6):114-121.(in Chinese)
李娟, 刘雯, 肖磊, 等. 实现人源FGF-21高效可溶性表达的两种策略[J]. 华东师范大学学报自然科学版, 2012(6): 114-121.
[16] Butt T R, Edavettal S C, Hall J P, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expression and Purification, 2005, 43(1): 1-9.