[1]唐玉林,米子岚,钟活权,等.利用SUMO技术表达可溶性的拟南芥AtRD22蛋白[J].深圳大学学报理工版,2015,32(6):610-616.[doi:10.3724/SP.J.1249.2015.06610]
 Tang Yulin,Mi Zilan,Zhong Huoquan,et al.Expressing the soluble AtRD22 protein of Arabidopsis thaliana in Escherichia coli using SUMO technology[J].Journal of Shenzhen University Science and Engineering,2015,32(6):610-616.[doi:10.3724/SP.J.1249.2015.06610]
点击复制

利用SUMO技术表达可溶性的拟南芥AtRD22蛋白()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第6期
页码:
610-616
栏目:
生物工程
出版日期:
2015-11-23

文章信息/Info

Title:
Expressing the soluble AtRD22 protein of Arabidopsis thaliana in Escherichia coli using SUMO technology
文章编号:
201506008
作者:
唐玉林12米子岚1钟活权3江年琼13
1)深圳大学生命与海洋科学学院,深圳 518060
2)深圳市海洋生物资源与生态环境重点实验室,深圳 518060
3)深圳市微生物基因工程重点实验室,深圳 518060
Author(s):
Tang Yulin12 Mi Zilan1 Zhong Huoquan3 and Jiang Nianqiong12
1) College of Life and Marine Science, Shenzhen University, Shenzhen 518060, P.R.China
2) Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, Shenzhen 518060, P.R.China
3) Shenzhen Key Laboratory of Genetic Engineering Microbes, Shenzhen 518060, P.R.China
关键词:
蛋白质工程拟南芥AtRD22融合标签小泛素相关修饰物基因克隆原核表达
Keywords:
protein engineering Arabidopsis AtRD22 fusion tag small ubiquitin-related modifier (SUMO) gene clone prokaryotic expression
分类号:
Q 943.2;Q 786
DOI:
10.3724/SP.J.1249.2015.06610
文献标志码:
A
摘要:
为了体外获得可溶性的拟南芥AtRD22蛋白,以拟南芥叶片提取的总核糖核酸(ribonucleic acid, RNA)为模版,反转录获得AtRD22的全长互补脱氧核糖核酸(complementary deoxyribonucleic acid, cDNA),分别构建AtRD22的原核重组表达载体pET32a-RD22和pSUMO-RD22,并转化大肠杆菌BL21(DE3)进行AtRD22蛋白的表达.在0.3 mmol/L的异丙基-β-D-硫代半乳糖苷(isopropyl-β-dithiogalactopyranoside, IPTG)诱导下,探索不同培养温度和诱导时间对可溶性蛋白表达的影响.结果表明,在实验条件下,转化pET32a-RD22的重组菌表达AtRD22蛋白的总量高于转化pSUMO-RD22的重组菌,但后者的可溶性AtRD22蛋白表达量明显高于前者.当诱导温度为28或16 ℃,时间分别为6.0或8.0 h以上时,转化pSUMO-RD22的重组菌中可溶性目的蛋白的表达量相对较大.为进一步在体外研究AtRD22蛋白质的结构和功能奠定了基础.
Abstract:
In order to obtain the soluble AtRD22 protein of Arabidopsis in vitro, the isolated total ribonucleic acid (RNA) of Arabidopsis thaliana leaves was used as the template for reverse transcription to amplify the full length complementary deoxyribonucleic acid (cDNA) of AtRD22. The obtained AtRD22 was constructed into two recombinant prokaryotic expression vectors pET32a-RD22 and pSUMO-RD22, respectively, and transformed into E.coli cells BL21(DE3) for the fusion protein expression. The induction temperature and time were optimized by a series of experiments conducted at 0.3 mmol/L isopropyl-Dithiogalactopyranoside (IPTG). Results show that the expression level of the total amount of the recombinant proteins in the pET32a-RD22-transformants is higher than that of pSUMO-RD22-transformants, but the level of soluble fusion protein in the latter is significantly higher than in the former. When the pSUMO-RD22-transformants are inducted for 6.0 h under 28 ℃ or for more than 8.0 h under 16 ℃, the expression level of the soluble fusion protein SUMO-RD22 is relatively higher. These results lay the foundation for the future study of the structure and function of AtRD22 in vitro.

参考文献/References:

[1] Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Molecular & General Genetics, 1993, 238(1/2): 17-25.
[2] Hattori J, Boutilier K A, Campagne M M L, et al. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures[J]. Molecular & General Genetics: MGG, 1998, 259(4): 424-428.
[3] Tang Yulin, Cao Yan, Ou Zhonghua, et al. Regulatable gene expression controlled by the promoter of Sali3-2 under different abiotic stresses[J]. Journal of Shenzhen University Science and Engineering, 2012,29(1):73-79. (in Chinese)
唐玉林, 曹雁, 欧忠华, 等. 非生物胁迫因子对大豆Sali3-2基因的调控作用[J]. 深圳大学学报理工版, 2012, 29(1): 73-79.
[4] Harshavardhan V T, Son L V, Seiler C, et al. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance[J]. PlOS One, 2014, 9(10): e110065.
[5] Tang Yulin, Cao Yan, Gao Zhan, et al. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses[J]. PlOS One, 2014, 9(6): e98830.
[6] Tomas Matus J, Aquea F, Espinoza C, et al. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses[J]. PLOS One, 2014, 9(10): e110372.
[7] Sorensen H P, Mortensen K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4(1):1-8.
[8] Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications[J]. Biotechnology Journal, 2012, 7(5): 620-634.
[9] Dümmler A, Lawrence A M, De Marco A. Simplified screening for the detection of soluble fusion constructs expressed in E.coli using a modular set of vectors[J].Microbial Cell Factories, 2005, 4(34):1-10.
[10] Malakhov M P, Mattern M R, Malakhova O A, et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins[J]. Journal of Structural and Functional Genomics, 2004, 5(1/2): 75-86.
[11] Zhang Licong, Li Xiaodan, Wei Dandan, et al. Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(10): 1369-1376.
[12] Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues[J]. Analytical Biochemistry, 1987, 163(1): 16-20.
[13] Hu Wei, Fu Qiang, Zhu Pingchuan, et al. An optimized method of protein in-gel digestion for mass spectrometry identification[J]. Journal of Southern Agriculture, 2011,42(7):802-805.(in Chinese)
胡炜, 付强, 朱平川, 等. 用于质谱鉴定蛋白质胶内酶解方法的优化[J]. 南方农业学报, 2011, 42(7): 802-805.
[14] Wu Shanshan, Zhu Yun, Chen Shanshan, et al. Progress in fusion tags and its applications in protein soluble expression[J].Chemical Industry and Engineering Progress, 2014,33(4):993-998.(in Chinese)
吴珊珊,朱芸,陈珊珊,等. 融合标签在蛋白质可溶性表达中的应用进展[J]. 化工进展, 2014, 33(4): 993-998.
[15] Li Juan, Liu Wen, Xiao Lei, et al. Two strategies for efficient expression of soluble recombinant human FGF-21[J].Journal of East China Normal University Natural Science, 2012(6):114-121.(in Chinese)
李娟, 刘雯, 肖磊, 等. 实现人源FGF-21高效可溶性表达的两种策略[J]. 华东师范大学学报自然科学版, 2012(6): 114-121.
[16] Butt T R, Edavettal S C, Hall J P, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expression and Purification, 2005, 43(1): 1-9.

备注/Memo

备注/Memo:
Received:2015-07-23;Accepted:2015-09-24
Foundation:National Natural Science Foundation of China (30770184); Research and Development Foundation of Science and Technology of Shenzhen (JCYJ20140724165855348)
Corresponding author:Associate professor Jiang Nianqiong. E-mali:jnq99@szu.edu.cn
Citation:Tang Yulin, Mi Zilan, Zhong Huoquan, et al. Expressing the soluble AtRD22 protein of Arabidopsis thaliana in Escherichia coli using SUMO technology[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 610-616.(in Chinese)
基金项目:国家自然科学基金资助项目(30770184);深圳市科技计划资助项目(JCYJ20140724165855348)
作者简介:唐玉林(1968—),女(汉族),广西壮族自治区桂林市人,深圳大学副教授、博士.E-mail:yltang@szu.edu.cn
引文:唐玉林,米子岚,钟活权,等. 利用SUMO技术表达可溶性的拟南芥AtRD22蛋白[J]. 深圳大学学报理工版,2015,32(6): 610-616.
更新日期/Last Update: 2015-11-06