[1]李冰石,薛山,宋国丽.纳米粒子对amyloid-β聚集的影响的研究进展[J].深圳大学学报理工版,2015,32(6):601-609.[doi:10.3724/SP.J.1249.2015.06601]
 Li Bingshi,Xue Shan,and Song Guoli.Review of the influence of nanoparticles on aggregation of amyloid-β[J].Journal of Shenzhen University Science and Engineering,2015,32(6):601-609.[doi:10.3724/SP.J.1249.2015.06601]
点击复制

纳米粒子对amyloid-β聚集的影响的研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第6期
页码:
601-609
栏目:
生物工程
出版日期:
2015-11-23

文章信息/Info

Title:
Review of the influence of nanoparticles on aggregation of amyloid-β
文章编号:
201506007
作者:
李冰石1薛山1宋国丽2
1)深圳大学化学与环境工程学院,深圳 518060
2)深圳大学生命与海洋科学学院,深圳 518060
Author(s):
Li Bingshi1 Xue Shan1 and Song Guoli2
1) College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P.R.China
2) College of Life and Marine Science, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
无机化学生物大分子金属复合物纳米粒子阿尔茨海默症β-类淀粉蛋白述评
Keywords:
inorganic chemistry biomacromolecule metal complexes nanoparticles Alzheimer’s disease (AD) amyloid-β (Aβ) review
分类号:
O 614;Q 71
DOI:
10.3724/SP.J.1249.2015.06601
文献标志码:
A
摘要:
阐述金属复合物和纳米粒子对β-类淀粉蛋白(amyloid-β, Aβ)聚集影响的最新研究进展.指出Aβ蛋白聚集过程始于寡聚体内核的组装,最终形成具有β-片层结构的螺旋状纤维.纳米粒子对纤维形成中的每一阶段都可能产生抑制或促进作用,从而影响Aβ的纤维化聚集.认为揭示Aβ聚集的影响因素及其作用机理,将有助于控制Aβ的纤维化聚集,减少其神经毒性,以此可寻找治疗阿尔茨海默症(Alzheimer’s disease, AD)的途径.
Abstract:
This paper reviews the influence of metal complexes and nanoparticles on the aggregation of amyloid-β(Aβ).The amyloid fibrillation starts from the assembly of the oligomer core and eventually assembls into helical fibrils with β-sheet.Nanoparticles are found to have considerable influence on the Aβ fibrillar aggregation.Revealing how these factors influence the mechanism of A-β aggregation will be helpful to control the fibrillar aggregation and reduce its neurotoxicity, thus might provide efficient ways for the treatment of Alzheimer’s disease eventually.

参考文献/References:

[1] Chiti F, Dobson C M. Protein misfolding, functional amyloid, and human disease[J]. Annual Review of Biochemistry, 2006, 75(1): 333-366.
[2] Swerdlow R H, Burns J M, Khan S M. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives[J]. Biochimica et Biophysica Acta, 2014, 1842(8): 1219-1231.
[3] Pimplikar S. Neuroinflammation in Alzheimer’s disease: from pathogenesis to a therapeutic target[J]. Journal of Clinical Immunology, 2014, 34(1): 64-69.
[4] Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches[J]. Angewandte Chemie-International Edition, 2009, 48(17): 3030-3059.
[5] Breydo L, Uversky V N. Structural, morphological, and functional diversity of amyloid oligomers[J]. FEBS letters, 2015, 589(19): 2640-2648.
[6] Iulita M F, Cuello A C. Nerve growth factor metabolic dysfunction in Alzheimer’s disease and down syndrome[J]. Trends in Pharmacological Sciences, 2014, 35(7): 338-348.
[7] Selkoe D J. Alzheimer’s disease:genes,proteins,and therapy[J]. Physiological Reviews, 2001, 81(2): 741-766.
[8] Sipe J D, Cohen A S. Review: history of the amyloid fibril[J]. Journal of Structural Biology, 2000, 130(2/3): 88-98.
[9] Westermark P, Benson M D, Buxbaum J N, et al. A primer of amyloid nomenclature[J]. Amyloid-Journal of Protein Folding Disorders, 2007, 14(3): 179-183.
[10] Nelson R, Sawaya M R, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils[J]. Nature, 2005, 435(743): 773-778.
[11] Lee C, Ham S. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water[J]. Journal of Computational Chemistry, 2011, 32(2): 349-355.
[12] Olofsson A, Lindhagen-Persson M, Sauer-Eriksson A , et al. Amide solvent protection analysis demonstrates that amyloid-beta(1-40) and amyloid-beta(1-42) form different fibrillar structures under identical conditions[J]. Biochemical Journal, 2007, 404(1): 63-70.
[13] Olofsson A. Sauer-Eriksson A E,Ohman A. The solvent protection of alzheimer amyloid-beta-(1-42) fibrils as determined by solution NMR spectroscopy[J]. The Journal of Biological Chemistry, 2006, 281(1): 477-483.
[14] Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide[J]. Journal of Biological Chemistry, 2001, 276(36): 34156-34161.
[15] Gazit E. A possible role for pi-stacking in the self-assembly of amyloid fibrils[J]. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 2002, 16(1): 77-83.
[16] Mohamed A, Cortez L. De Chaves E P. Aggregation state and neurotoxic properties of alzheimer β-amyloid peptide[J]. Current Protein and Peptide Science, 2011, 12(3): 235-257.
[17] Serem W K, Bett C K, Ngunjiri J N. Studies of the growth, evolution, and self-aggregation of beta-amyloid fibrils using tapping-mode atomic force microscopy[J]. Microscopy Research and Technique, 2011, 74(7): 699-708.
[18] Shinkai Y, Yoshimura M, Ito Y, et al. Amyloid beta-proteins 1-40 and 1-42(43)in the soluble fraction of extra-and intracranial blood vessels[J]. Annals of Neurology, 1995, 38(3): 421-428.
[19] Lewczuk P, Kornhuber J, Vanmechelen E, et al. Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing[J]. Experimental Neurology, 2010, 223(2): 366-370.
[20] Yamaguchi T, Matsuzaki K, Hoshino M. Transient formation of intermediate conformational states of amyloid-beta peptide revealed by heteronuclear magnetic resonance spectroscopy[J]. FEBS Letters, 2011, 585(7): 1097-1102.
[21] Sabella S, Quaglia M, Lanni C, et al. Capillary electrophoresis studies on the aggregation process of beta-amyloid 1-42 and 1-40 peptides[J]. Electrophoresis, 2004, 25(18/19): 3186-3194.
[22] Bromberg L, Chang E P, Alvarez-Lorenzo C, et al. Binding of functionalized paramagnetic nanoparticles to bacterial lipopolysaccharides and DNA[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(11): 8829-8835.
[23] Mu Bin, Liu Peng, Du Pengcheng, et al. Magnetic-targeted pH-responsive drug delivery system via layer-by-layer self-assembly of polyelectrolytes onto drug-containing emulsion droplets and its controlled release[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(9): 1969-1976.
[24] Jambhrunkar S, Qu Zhi, Popat A, et al. Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity[J]. Molecular Pharmaceutics, 2014, 11(10): 3642-3655.
[25] Ke Qingqing, Pei Jiying, Yang Fan, et al. Visual Colorimetric Detection of Neurogenin 3 with Glutathione-Modified Gold Nanoparticle[J]. Chinese Journal of Analytical Chemistry, 2014, 42(7): 955-961.
[26] Liao Yihung, Chang Yujen, Yoshiike Yuji, et al. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity[J]. Small (Weinheim an der Bergstrasse, Germany), 2012, 8(23): 3631-3639.
[27] Majzik A, Fueloep L, Csapo E, et al. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment[J]. Colloids and Surfaces B Biointerfaces, 2010, 81(1): 235-241.
[28] Lee H, Kim Y, Park A, et al. Amyloid-β aggregation with gold nanoparticles on brain lipid bilayer[J]. Small (Weinheim an der Bergstrasse, Germany), 2014, 10(9): 1779-1789.
[29] Yang F S, Lim G P, Begum A N, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo[J]. Journal of Biological Chemistry, 2005, 280(7): 5892-5901.
[30] Banerjee R. Effect of curcumin on the metal ion induced fibrillization of amyloid-beta peptide[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2014, 117: 798-800.
[31] Palmal S, Maity A R, Singh B K, et al. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(20): 6184-6191.
[32] Zirah S, Kozin S A, Mazur A K, et al. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging[J]. Journal of Biological Chemistry, 2006, 281(4): 2151-2161.
[33] Danielsson J, Pierattelli R, Banci L, et al. High-resolution NMR studies of the zinc-binding site of the Alzheimer’s amyloid beta-peptide[J]. FEBS Journal, 2007, 274(1): 46-59.
[34] Zou Jin, Kajita K, Sugimoto N. Cu2+ inhibits the aggregation of amyloid β-peptide(1-42) in vitro [J]. Angewandte Chemie International Edition, 2001, 40(12): 2274-2277.
[35] Raman B, Ban T, Yamaguchi K, et al. Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid beta peptide[J]. Journal of Biological Chemistry, 2005, 280(16): 16157-16162.
[36] Smith D P, Ciccotosto G D, Tew D J, et al. Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide[J]. Biochemistry, 2007, 46(10): 2881-2891.
[37] Dorlet P, Gambarelli S, Faller P, et al. Pulse EPR spectroscopy reveals the coordination sphere of copper(II) ions in the 1-16 amyloid-β peptide: a key role of the first two N-Terminus residues[J]. Angewandte Chemie-International Edition, 2009, 48(49): 9273-9276.
[38] Drew S C, Noble C J, Masters C L, et al. Pleomorphic Copper coordination by Alzheimer’s disease amyloid-beta peptide[J]. Journal of the American Chemical Society, 2009, 131(3): 1195-1207.
[39] Huang X, Atwood C S, Hartshorn M A, et al. The Aβ peptide of Alzheimer’s disease directly produces Hydrogen peroxide through metal ion reduction[J]. Biochemistry, 1999, 38(24): 7609-7616.
[40] Miura T, Suzuki K, Takeuchi H. Binding of iron(III) to the single tyrosine residue of amyloid beta-peptide probed by raman spectroscopy[J]. Journal of Molecular Structure, 2001, 598(1): 79-84.
[41] Ricchelli F, Drago D, Filippi B, et al. Aluminum-triggered structural modifications and aggregation of beta-amyloids[J]. Cellular and Molecular Life Sciences, 2005, 62(15): 1724-1733.
[42] Miller Y, Ma Buyong, Nussinov R. Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9490-9495.
[43] Lin Changjun, Huang Hanchang, Jiang Zhaofeng. Cu(II) interaction with amyloid-beta peptide: a review of neuroactive mechanisms in AD brains[J]. Brain Research Bulletin, 2010, 82(5/6): 235-242.
[44] Lim S C, Paterson B M, Fodero-Tavoletti M T, et al. A copper radiopharmaceutical for diagnostic imaging of Alzheimer’s disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-beta plaques[J]. Chemical Communications, 2010, 46(30): 5437-5439.
[45] Barnham K J, Kenche V B, Ciccotosto G D, et al. Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19): 6813-6818.
[46] Seixas J D, Santos M F, Mukhopadhyay A A, et al. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO[J]. Dalton Transactions, 2015, 44(11): 5058-5075.
[47] Streltsov V A, Epa V C, James S A, et al. Structural insights into the interaction of platinum-based inhibitors with the Alzheimer’s disease amyloid-beta peptide[J]. Chemical Communications, 2013, 49(97): 11364-11366.
[48] Man B Y W, Chan H M, Leung C H, et al. Group 9 metal-based inhibitors of β-amyloid(1-40)fibrillation as potential therapeutic agents for Alzheimer’s disease[J]. Chemical Science, 2011, 2(5): 917-921.
[49] Wu Weihui, Sun Xun, Yu Yeping, et al. TiO2 nanoparticles promote β-amyloid fibrillation in vitro[J]. Biochemical and Biophysical Research Communications, 2008, 373(2): 315-318.
[50] Mahmoudi M, Hofmann H, Rothen-Rutishauser B, et al. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles[J]. Chemical Reviews, 2012, 112(4): 2323-2338.
[51] Mahmoudi M, Quinlan-Pluck F, Monopo M P, et al. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution[J]. ACS Chemical Neuroscience, 2013, 4(3): 475-485.
[52] Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I A, et al. Dual effect of amino modified polystyrene nanoparticles on amyloid beta protein fibrillation[J]. ACS Chemical Neuroscience, 2010, 1(4): 279-287.
[53] Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I A, et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles[J]. Journal of the American Chemical Society, 2008, 130(46): 15437-15443.
[54] Foley P, Gerlach M, Youdim M B, et al. MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders?[J]. Parkinsonism & Related Disorders, 2000, 6(1): 25-47.
[55] Ono K, Hasegawa K, Naiki H, et al. Anti-Parkinsonian agents have anti-amyloidogenic activity for alzheimer’s β-amyloid fibrils in vitro[J]. Neurochemistry International, 2006, 48(4): 275-285.
[56] Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y A, et al. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils[J]. Journal of Neural Transmission, 2013, 120(6): 903-910.
[57] Engel M F, Vandenakker C C, Schleeger M, et al. The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution[J]. Journal of the American Chemical Society, 2012, 134(36): 14781-14788.
[58] Bellinger F P, Raman A V, Reeves M A. Regulation and function of selenoproteins in human disease[J]. Biochemical Journal, 2009, 422(1): 11-22.
[59] Zhang Jingnan, Zhou Xianbo, Yu Qianqian, et al. Epigallocatechin-3-gallate(EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8475-8487.
[60] Medina C, Santos-Martinez M J, Radomski A, et al. Nanoparticles: pharmacological and toxicological significance[J]. British Journal of Pharmacology, 2007, 150(5): 552-558.
[61] Mulik R S, Monkkonen J, Juvonen R O, et al. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model[J]. Molecular Pharmaceutics, 2010, 7(3): 815-825.
[62] Brambilla D, Le Droumaguet B, Nicolas J A, et al. Nanotechnologies for alzheimer’s disease: diagnosis, therapy, and safety issues[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7(5): 521-540.
[63] Ni Jiazuan, Chen Ping, Liu Qiong, et al. Advance reseach on strategies for the prevention of Alzheimer’s disease[J]. Journal of Shenzhen University Science and Engineering, 2013,30(4):331-348.(in Chinese)
倪嘉缵,陈平,刘琼,等. 阿尔茨海默病的防治策略研究进展[J].深圳大学学报理工版,2013,30(4):331-348. 

备注/Memo

备注/Memo:
Received:2015-06-02;Accepted:2015-09-23
Foundation:National Natural Science Foundation of China (81400847)
Corresponding author:Professor Li Bingshi.E-mail: phbingsl@szu.edu.cn
Citation:Li Bingshi, Xue Shan, Song Guoli.Review of the influence of nanoparticles on aggregation of amyloid-β [J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 601-609.(in Chinese)
基金项目:国家自然科学基金资助项目(81400847)
作者简介:李冰石(1972—),女(汉族),黑龙江省哈尔滨市人,深圳大学教授.E-mail: phbingsl@szu.edu.cn
引文:李冰石,薛 山,宋国丽.纳米粒子对amyloid-β聚集的影响的研究进展[J]. 深圳大学学报理工版,2015,32(6):601-609.
更新日期/Last Update: 2015-11-06