[1]马喆,张明江,刘慧,等.混沌激光布里渊散射的分布式光纤温度传感[J].深圳大学学报理工版,2015,32(6):586-593.[doi:10.3724/SP.J.1249.2015.06586]
 Ma Zhe,Zhang Mingjiang,Liu Hui,et al.Distributed optical fiber temperature sensing based on chaotic light Brillouin scattering[J].Journal of Shenzhen University Science and Engineering,2015,32(6):586-593.[doi:10.3724/SP.J.1249.2015.06586]
点击复制

混沌激光布里渊散射的分布式光纤温度传感()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第6期
页码:
586-593
栏目:
光电工程
出版日期:
2015-11-23

文章信息/Info

Title:
Distributed optical fiber temperature sensing based on chaotic light Brillouin scattering
文章编号:
201506005
作者:
马喆12张明江12刘慧12刘毅12王云才12
1)新型传感器与智能控制教育部重点实验室,太原 030024
2)太原理工大学物理与光电工程学院,光电工程研究所,太原 030024
Author(s):
Ma Zhe12 Zhang Mingjiang12 Liu Hui12 Liu Yi12 and Wang Yuncai12
1) Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan 030024, P.R.China
2) College of Physics and Optoelectronics, Institute of Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
关键词:
光纤光学分布式光纤传感温度测量光相干法混沌激光布里渊散射
Keywords:
fiber optics distributed fiber sensing temperature measurement optical coherent chaotic laser Brillouin scattering
分类号:
TP 212.9
DOI:
10.3724/SP.J.1249.2015.06586
文献标志码:
A
摘要:
提出一种基于混沌激光布里渊散射的分布式光纤温度传感方法.采用相干长度为8853 cm的混沌激光作为光源,结合相干域反射技术,利用可变光延迟线调节参考光光程,通过检测传感光纤不同位置的混沌布里渊散射光与参考光的干涉信号,获知整条光纤的温度信息分布.搭建实验系统,研究了注入光功率与偏振态对混沌激光布里渊散射光的特性影响.实验研究待测光纤中固定点的布里渊频移随温度的变化情况,获得127 ℃/MHz的温度系数.在长度为155 m的普通单模光纤上实现空间分辨率为12 m的分布式光纤温度传感测量.
Abstract:
We proposed a novel approach to distributed optical fiber temperature sensing based on chaotic laser Brillouin scattering. By utilizing a chaotic light with 88.53 cm coherence length as the probe light and the coherent domain reflection technology, and using a rapid variable optical delay line to adjust the reference light path, we measured temperatures by detecting the interference of the back Brillouin scattering light and reference light at different locations along the sensing fiber. We set up an experimental system to investigate the effect of injected optical power and polarization pattern on the performance of the chaotic laser Brillouin scattering, conducted an experimental study on the variation of the Brillouin frequency shift (BFS) with temperature, and achieved the temperature coefficient of 127 ℃/MHz and a spatial resolution of 12 m for the 155 m standard single-mode optical fiber.

参考文献/References:

[1] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.
[2] Zhou Dapeng, Li Wenhai, Chen Liang, et al. Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber[J]. Sensors, 2013, 13(2): 1836-1845.
[3] Liu Deming, Sun Qizhen. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 2009, 46(11): 29-33.(in Chinese)
刘德明,孙琦真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展,2009, 46(11): 29-33.
[4] Williams D, Bao Xiaoyi, Chen Liang. Investigation of combined Brillouin gain and loss in a birefringent fiber with applications in sensing[J]. Chinese Optics Letters, 2014, 12(12): 123101-1-123101-7.
[5] Kurashima T, Horiguchi T, Izumita H, et al. Brillouin optical-fiber time domain reflectometry[J]. IEICE Transactions on Communications, 1993, E76-B(4): 382-390.
[6] Bi Weihong, Yang Xipeng, Li Jingyang, et al. Forward and backward Raman amplification of Brillouin scattering signal in Brillouin optical time domain reflectometer system[J]. Chinese Journal of Lasers, 2014, 41(12): 1205007-1-1205007-6.(in Chinese)
毕卫红,杨希鹏,李敬阳,等. 布里渊光时域反射系统中布里渊散射信号的前向和后向拉曼放大研究[J]. 中国激光,2014, 41(12): 1205007-1-1205007-6.
[7] Li Yongqian, Li Xiaojuan, An Qi. New method to improve the performance of Brillouin optical time domain reflectometer system[J]. Acta Optica Sinica, 2015, 35(1): 0106003-1-0106003-10.(in Chinese)
李永倩,李晓娟,安琪. 提高布里渊光时域反射系统传感性能的方法[J]. 光学学报,2015, 35(1): 0106003-1-0106003-10.
[8] Peng Yingcheng, Qian Hai, Lu Hui, et al. New research progress on distributed optical fiber sensor technique based on BOTDA[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100005-1-100005-5.(in Chinese)
彭映成,钱海,鲁辉,等. 基于BOTDA的分布式光纤传感技术新进展[J]. 激光与光电子学进展,2013, 50(10): 100005-1-100005-5.
[9] Song Mouping, Li Zhicheng, Qiu Chao. A 50 km distributed optical fiber sensor based on Brillouin optical time-domain analyzer[J]. Chinese Journal of Lasers, 2010, 37(6): 1426-1429.(in Chinese)
宋牟平,励志成,裘超. 50 km长距离布里渊光时域分析分布式光纤传感器[J]. 中国激光,2010, 37(6): 1426-1429.
[10] Hayashi N, Mizuno Y, Nakamura K. Simplified configuration of Brillouin optical correlation-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(5): 6802807-1-6802807-7.
[11] Jeong J H, Lee K, Jeong J, et al. Measurement range enlargement in Brillouin optical correlation domain analysis using multiple correlation peaks[J]. Journal of the Optical Society of Korea, 2012, 16(3): 210-214.
[12] Mizuno Y, Zou Weiwen, He Zuyuan, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148- 12153.
[13] Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis[J]. IEEE Photonics Technology Letters, 2007, 19(23): 1928-1930.
[14] Zou W, He Z, Hotate K. Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations[J]. IEEE Sensors Journal, 2014, 14(1): 244-248.
[15] Koyamada Y, Sakairi Y, Takeuchi N, et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry[J]. IEEE Photonics Technology Letters, 2007, 19(23): 1910-1912.
[16] Li Wenhai, Bao Xiaoyi, Li Yun, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.
[17] Dong Yongkang, Zhang Hongying, Chen Liang, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.
[18] Foaleng S M, Tur M, Beugnot J C, et al. High spatial and spectral resolution long-range sensing using Brillouin echoes[J]. Journal of Lightwave Technology, 2010, 28(20): 2993-3003.
[19] Mizuno Y, He Z, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme[J]. Optics Express, 2009, 17(11): 9040-9046.
[20] Cohen R, London Y, AntmanY, et al. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission[J]. Optics Express, 2014, 22(10): 12070-12078.
[21] DenisovA, Soto M, Thévenaz L. 1 000 000 resolved points along a Brillouin distributed fibre sensor[C]// The 23rd International Conference on Optical Fibre Sensors. Santander(Spain): SPIE, 2014: 9157D2-1-9157D2-4.
[22] London Y, Antman Y, Cohen R, et al. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding[J]. Optics Express, 2014, 22(22): 27144-27158.
[23] Agrawal G P. Nonlinear fiber optics[M]. 5th ed. New York(USA): Academic Press, 2012: 353-358.
[24] Kurashima T, Horiguchi T, Ohnot H, et al. Strain and temperature characteristics of Brillouin spectra in optical fibers for distributed sensing techniques[C]// The 24th European Conference on Optical Communication. Madrid (Spain): IEEE, 1998: 149-150.
[25] Horak P, Loh W H. On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers[J]. Optics Express, 2006, 14(9): 3923-3928.
[26] Wang Yuncai, Kong Lingqin, Wang Anbang, et al. Coherence length tunable semiconductor laser with optical feedback[J]. Applied Optics, 2009, 48(5): 871-973.

相似文献/References:

[1]张力,刘承香,叶薇薇.掺铒光纤光源的数值模拟及软件实现[J].深圳大学学报理工版,2010,27(3):322.
 ZHANG Li,LIU Cheng-xiang,and YE Wei-wei.Numerical simulation and software implementation of erbium-doped fiber source[J].Journal of Shenzhen University Science and Engineering,2010,27(6):322.
[2]郭媛,阮双琛.含空气小孔芯光子晶体光纤的色散特性研究[J].深圳大学学报理工版,2010,27(4):386.
 GUO Yuan and RUAN Shuang-chen.Analysis on the dispersion properties of photonic crystal fiber with an air-hole defect core[J].Journal of Shenzhen University Science and Engineering,2010,27(6):386.
[3]邓元龙,赵小丽,李学金,等.基于F-P干涉的强度型光纤压力传感器[J].深圳大学学报理工版,2011,28(No.1(001-095)):17.
 DENG Yuan-long,ZHAO Xiao-li,LI Xue-jin,et al.An optical fiber pressure sensor based on F-P interferometry and intensity demodulation[J].Journal of Shenzhen University Science and Engineering,2011,28(6):17.
[4]成建群,阮双琛,郭春雨,等.窄线宽掺铒光子晶体光纤激光器[J].深圳大学学报理工版,2011,28(No.5(377-470)):400.
 CHENG Jian-qun,RUAN Shuang-chen,GUO Chun-yu,et al.Narrow linewidth Erbium-doped photonic crystal fiber laser[J].Journal of Shenzhen University Science and Engineering,2011,28(6):400.
[5]陈哲,翟艳芳,余健辉,等.微纳光纤偏振分束器特性研究[J].深圳大学学报理工版,2012,29(No.2(095-188)):129.[doi:10.3724/SP.J.1249.2012.02129]
 CHEN Zhe,ZHAI Yan-fang,et al.The characteristics of the polarization beam splitters based on micro/nano optical fiber[J].Journal of Shenzhen University Science and Engineering,2012,29(6):129.[doi:10.3724/SP.J.1249.2012.02129]

备注/Memo

备注/Memo:
Received:2015-06-05;Accepted:2015-06-20
Foundation:National Natural Science Foundation of China(61227016, 61377089); Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(2012lfjyt08)
Corresponding author:Professor Zhang Mingjiang.E-mail: zhangmingjiang@tyuteducn
Citation:Ma Zhe, Zhang Mingjiang, Liu Hui,et al.Distributed fiber sensing for temperature measurement based on chaotic light Brillouin scattering[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(6): 586-593.(in Chinese)
基金项目:国家自然科学基金资助项目(61227016,61377089);山西省高等学校优秀青年学术带头人支持计划资助项目(2012lfjyt08)
作者简介:马喆(1989—),男(汉族),山西省运城市人,太原理工大学硕士研究生.E-mail:mazhe315@foxmailcom
引文:马喆,张明江,刘慧,等.基于混沌激光布里渊散射的分布式光纤温度传感[J]. 深圳大学学报理工版,2015,32(6):586-593.
更新日期/Last Update: 2015-11-06