[1]吴维扬,丰建文,赵毅.基于随机牵制控制的复杂网络均方簇同步[J].深圳大学学报理工版,2015,32(5):538-545.[doi:10.3724/SP.J.1249.2015.05538]
 Wu Weiyang,Feng Jianwen,and Zhao Yi.Mean square cluster synchronization of complex networks via random pinning control[J].Journal of Shenzhen University Science and Engineering,2015,32(5):538-545.[doi:10.3724/SP.J.1249.2015.05538]
点击复制

基于随机牵制控制的复杂网络均方簇同步()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第5期
页码:
538-545
栏目:
电子与信息科学
出版日期:
2015-09-18

文章信息/Info

Title:
Mean square cluster synchronization of complex networks via random pinning control
文章编号:
201505013
作者:
吴维扬丰建文赵毅
深圳大学数学与统计学院,深圳 518060
Author(s):
Wu Weiyang Feng Jianwen and Zhao Yi
College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
动力系统复杂网络簇同步时滞随机扰动随机牵制控制
Keywords:
dynamic system complex network cluster synchronization time delay stochastic perturbation random pinning control
分类号:
O 193
DOI:
10.3724/SP.J.1249.2015.05538
文献标志码:
A
摘要:
基于随机牵制控制对同时存在无时滞耦合和时变时滞耦合的复杂网络,研究有噪声干扰下的均方簇同步问题.该网络所有耦合均为非线性,每一簇中节点动力学相同且不同簇节点动力学不同. 通过引入Bernoulli随机变量,所有控制均以不同概率对该网络实施控制.根据Lyapunov稳定性理论和随机分析理论得到该网络实现均方簇同步的条件,并在理论上给出严格证明.数值实验证明所得理论正确.
Abstract:
The mean square cluster synchronization is investigated in directed networks with non-identical nodes perturbed by communication noise as well as those with both delay and non-delay coupling. In addition, all node states in coupling processes are nonlinear with equal dynamic for nodes in a cluster but different dynamics for nodes in different clusters. The pinning control method is employed in designing controllers for guaranteeing cluster synchronization. All the controllers are supposed to occur with different probabilities by introducing Bernoulli stochastic variables. Some sufficient mean square synchronization conditions are derived and proved theoretically based on the Lyapunov stability theorem and the stochastic analysis theory. The theoretical results are verified by a numerical simulation.

参考文献/References:

[1] Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410(2): 268-276.
[2] Boccaletti S, Latora V, Morenod Y, et al. Complex networks:structure and dynamics[J]. Physics Reports, 2006, 424(4/5): 175-308.
[3] Arenas A, Díaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153.
[4] Zhou Jin, Chen Tianping. Synchronization in general complex delayed dynamical networks[J]. IEEE Transactions on Circuits and Systems, 2006, 53(3): 733-744.
[5] Wang Zidong, Wang Yao, Liu Yurong. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays[J]. IEEE Transactions on Neural Networks, 2010, 21(1): 11-25.
[6] Gu Yaqin, Shao Chun, Fu Xinchu. Complete synchronization and stability of star-shaped complex networks[J]. Chaos Solitons & Fractals, 2006, 28(2): 480-488.
[7] Zheng Zhigang, Hu Gang. Generalized synchronization versus phase synchronization[J]. Physical Review E, 2000, 62(6): 7882-7885.
[8] Lu Wenlian, Liu Bo, Chen Tianping. Cluster synchronization in networks of coupled nonidentical dynamical systems[J]. Chaos, 2010, 20(1): 013120-1-013120-12.
[9] Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters, 1996, 76(11): 1804-1807.
[10] Wu Xiaoqun, Zheng Weixing, Zhou Jin. Generalized outer synchronization between complex dynamical networks[J]. Chaos, 2009, 19(1): 1054-1500.
[11] Zhang Shunan, Wu Xiaoqun, Lu Anjun, et al. Recovering structures of complex dynamical networks based on generalized outer synchronization[J]. IEEE Transactions on Circuits and Systems, 2014, 61(11): 3216-3224.
[12] Yu Le, Tu Lilan, Liu Hongfang. Adaptive cluster synchronization for a complex dynamical network with delays and stochastic perturbation[J]. The European Physical Journal B, 2013, 86(4):130-1-130-6.
[13] Chen Tianping, Liu Xiwei, Lu Wenlian. Pinning complex networks by a single controller[J]. IEEE Transctions on Circuits and Systems, 2007, 54(6): 1317-1326.
[14] Yang Yongqing, Cao Jinde. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1650-1659.
[15] Wang Kaihua, Fu Xinchu, Li Kezan. Cluster synchronization in community networks with nonidentical nodes[J]. Chaos, 2009, 19(2): 023106-1-023106-10.
[16] Liu Xiaoyang, Chen Tianping. Cluster synchronization in directed networks via intermittent pinning control[J]. IEEE Transactions on Neural Networks, 2011, 22(7): 1009-1020.
[17] Su Housheng, Rong Zhihai, Chen M Z Q, et al. Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks[J]. IEEE Transactions on Cybernetics, 2013, 43(1): 394-399.
[18] Wu Xiangjun, Lu Hongtao. Exponential synchronization of weighted general delay coupled and non-delay coupled dynamical networks[J]. Computer & Mathematics with Application, 2010, 60(8): 2476-2487.
[19] Wang Yangling, Cao Jinde. Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamical systems[J]. Nonlinear Analysis: Real World Applications, 2013, 14(8): 842-851.
[20] Hu Aihua, Cao Jinde, Hu Manfeng, et al. Cluster synchronization in directed networks of non-identical systems with noises via random pinning control[J]. Physica A: Statistical Mechanics and its Applications, 2014, 395(4): 537-548.
[21] Wang Jingyi, Xu Chen, Feng Jianwen, et al. Mean-square exponential synchronization of Markovian switching stochastic complex networks with time-varying delays by pinning control[J]. Abstract and Applied Analysis, 2012, 2012: 298095-1-298095-18.
[22] Wang Jingyi, Feng Jianwen, Xu Chen, et al. Cluster synchronization of nonlinearly-coupled complex networks with non-identical nodes and asymmetrical coupling matrix[J]. Nonlinear Dynamics, 2012, 67(2): 1635-1646.
[23] Baker C T H, Buckwar E. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations[J]. Computer and Applied Mathematics, 2005, 184: 404-427.

相似文献/References:

[1]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(5):469.[doi:10.3724/SP.J.1249.2013.05469]
[2]毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96.[doi:10.3724/SP.J.1249.2016.01096]
 Mao Beixing and Wang Zhanwei.Finite-time synchronization control of a class of fractional-order complex network systems[J].Journal of Shenzhen University Science and Engineering,2016,33(5):96.[doi:10.3724/SP.J.1249.2016.01096]
[3]李娜,丰建文,赵毅.具有马氏跳拓扑复杂网络的有限时间同步[J].深圳大学学报理工版,2016,33(4):359.[doi:10.3724/SP.J.1249.2016.04359]
 Li Na,Feng Jianwen,and Zhao Yi.Finite-time synchronization of Markovian jump complex networks[J].Journal of Shenzhen University Science and Engineering,2016,33(5):359.[doi:10.3724/SP.J.1249.2016.04359]
[4]潘静静,王晓峰.复杂网络视角下的港口连通性建模及应用[J].深圳大学学报理工版,2017,34(5):544.[doi:10.3724/SP.J.1249.2017.05544]
 Pan Jingjing,and Wang Xiaofeng.Port connectivity model based on complex network and its application[J].Journal of Shenzhen University Science and Engineering,2017,34(5):544.[doi:10.3724/SP.J.1249.2017.05544]
[5]吴雪飞,徐晨.基于牵制控制的一类线性耦合复杂网络同步[J].深圳大学学报理工版,2011,28(No.5(377-470)):460.
 WU Xue-fei and XU Chen.The synchronization of a dynamic complex network with linear coupling[J].Journal of Shenzhen University Science and Engineering,2011,28(5):460.

备注/Memo

备注/Memo:
Received:2015-07-01;Accepted:2015-08-22
Foundation:National Natural Science Foundation of China (61273220, 61373087)
Corresponding author:Professor Feng Jianwen. E-mail: fengjw@szu.edu.cn
Citation:Wu Weiyang,Feng jianwen,Zhao Yi.Mean square cluster synchronization of complex networks via random pinning control[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(5): 538-545.(in Chinese)
基金项目:国家自然科学基金资助项目(61273220, 61373087)
作者简介:吴维扬(1991—),女(汉族),湖北省襄阳市人,深圳大学硕士研究生.E-mail:yangyang7116@sina.cn
引文:吴维扬,丰建文,赵毅.基于随机牵制控制复杂网络的均方簇同步[J]. 深圳大学学报理工版,2015,32(5):538-545.
更新日期/Last Update: 2015-09-15