[1]唐剑炬,付洪忱.方波外场下有限维量子系统的控制协议[J].深圳大学学报理工版,2015,32(5):441-448.[doi:10.3724/SP.J.1249.2015.05441]
 Tang Jianju,and Fu Hongchen.Control protocol of finite dimensional quantum system using alternating square pulse[J].Journal of Shenzhen University Science and Engineering,2015,32(5):441-448.[doi:10.3724/SP.J.1249.2015.05441]
点击复制

方波外场下有限维量子系统的控制协议()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第5期
页码:
441-448
栏目:
物理
出版日期:
2015-09-18

文章信息/Info

Title:
Control protocol of finite dimensional quantum system using alternating square pulse
文章编号:
201505001
作者:
唐剑炬12付洪忱1
1)深圳大学物理科学与技术学院,深圳 518060
2)香港大学物理系,香港
Author(s):
Tang Jianju1 2 and Fu Hongchen1
1) College of Physical Science and Technology, Shenzhen University, Shenzhen 518060, P.R.China
2) Department of Physics, The University of Hong Kong, Hong Kong, P.R.China
关键词:
量子物理量子控制控制协议有限维量子系统方波脉冲时间演化算符
Keywords:
quantum physics quantum control control protocol finite dimensional quantum system square pulse time evolution operator
分类号:
O 313.2
DOI:
10.3724/SP.J.1249.2015.05441
文献标志码:
A
摘要:
研究利用方型交替场进行有限维量子系统的控制协议.通过一个多循环的过程把量子系统控制到任意给定的目标态, 在每个循环里利用方波脉冲控制系统能级间单个或几个跃迁.研究系统包括:除第1能级间隔外其他都一样的有限维系统;第1和第3能级间隔相等的4能级系统;各能级间隔都一样的3能级系统.目标态几率幅与系统与外场的作用时间以及系统的自由演化时间满足三角函数关系,并可解析地确定.
Abstract:
A control protocol to drive finite dimensional quantum systems to an arbitrary target state is proposed explicitly by using square pulses. It is a multi-cycle control process, and in each cycle we apply square pulses to cause a single or a few transitions between energy levels. Systems with equal energy gaps except for the first one, four-dimensional systems with equal first and third energy gaps but different second energy gap, and three-dimensional systems with all equal energy gaps are investigated in detail. The control parameters, namely the interaction time between systems and control fields as well as free evolution times between cycles, are connected with the probability amplitudes of target states via trigonometric functions and are determined analytically.

参考文献/References:

[1] Belavkin V P. On the theory of controlling observable quantum systems[J]. Automation and Remote Control, 1983, 44(2): 178-188.
[2] Huang G M, Tarn T J, Clark J W. On the controllability of quantum-mechanical systems[J].Journal of Mathematical Physics, 1983, 24(11): 2608-2618.
[3] Blaquière A,Diner S,Lochak G. Information complexity and control in quantum physics[C]// Proceedings of the 4th International Seminar on Mathematical Theory of Dynamical Systems and Microphysics Udine. Vienna: Springer, 1987.
[4] Butkovskiy A G, Samoilenko Y I. Control of quantum-mechanical processes and systems[M]. Dordrecht (Netherlands): Kluwer Academic, 1990.
[5] Jurdjevic V. Geometric control theory[M]. Cambridge (UK): Cambridge University Press, 1997.
[6] Lloyd S. Coherent quantum feedback[J]. Physical Review A, 2000, 62(2):022108.
[7] Peirce A P, Dahleh M A, Rabitz H. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications[J]. Physical Review A, 1988, 37(12): 4950-4964.
[8] Bartana A, Kosloff R, Tannor D J. Laser cooling of molecules by dynamically trapped states[J]. Chemical Physics, 2001, 267(1): 195-207.
[9] Boscain U, Charlot G, Gauthier J P, et al. Optimal control in laser-induced population transfer for two- and three-level quantum systems[J]. Journal of Mathematical Physics, 2002, 43(5): 2107-2132.
[10] Ramakrishna V, Rabitz H. Relation between quantum computing and quantum controllability[J]. Physical Review A, 1996, 54(2): 1715-1716.
[11] Schirmer S G, Fu H, Solomon A I. Complete controllability of quantum systems[J]. Physical Review A, 2000, 63(6): 151-159.
[12] Fu H, Schirmer S G, Solomon A I. Complete controllability of finite-level quantum systems[J]. Journal of Physics A: Mathematical and General, 2001, 34(8): 1679-1690.
[13] Defranceschi M, Bris L C. Mathematical models and methods for ab initio quantum chemistry[M]. Berlin: Springer, 2000.
[14] Turinici G, Rabitz H. Quantum wavefunction controllability[J]. Chemical Physics, 2001, 267(1/2/3): 1-9.
[15] Wiseman H M, Milburn G J. Quantum measurement and control[M]. Cambridge (UK):Cambridge University Press, 2010.
[16] Fu, Hongchen, Hui Dong, Liu Xufeng, et al. Indirect control with a quantum accessor: Coherent control of multilevel system via a qubit chain[J]. Physical Review A, 2007, 75(5): 052317.
[17] Fu Hongchen, Hui Dong, Liu Xufeng, et al. Indirect control of quantum systems via an accessor: pure coherent control without system excitation[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(4): 461-471.
[18] Romano R, D’Alessandro D. Environment-mediated control of a quantum system[J]. Physical Review Letter, 2006, 97(8):080402.
[19] Romano R, D’Alessandro D. Incoherent control and entanglement for two-dimensional coupled systems[J]. Physical Review A, 2006, 73(2): 022323-1-022323-13.
[20] Pechen A,Rabitz H. Teaching the environment to control quantum systems[J]. Physical Review A, 2006, 73(6): 062102.
[21] Tang Jianju, Fu Hongchen. Control protocol of finite dimensional quantum systems[J]. Communications in Theoretical Physics, 2013, 60(6): 731-737.
[22] Scully M O, Zubairy M S. Quantum optics[M]. Cambridge(UK): Cambridge University Press, 2000.
[23] Wei J, Norman E. Lie algebraic solution of linear differential equations[J]. Journal of Mathematical Physics, 1968, 4(4): 575-581.

备注/Memo

备注/Memo:
Received:2015-06-26;Accepted:2015-08-14
Foundation:National Natural Science Foundation of China(61374057);Shenzhen Science and Technology Research and Development Fundation(ZYC201105170224A)
Corresponding author:Professor Fu Hongchen.E-mail: hcfu@szu.edu.cn
Citation:Tang Jianju,Fu Hongchen.Control protocol of finite dimensional quantum system using alternating square pulse[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(5): 441-448.(in Chinese)
基金项目:国家自然科学基金资助项目(61374057);深圳市科技研发基金资助项目(ZYC201105170224A)
作者简介:唐剑炬(1988—),男(汉族),广东省罗定市人,香港大学博士研究生.E-mail: 2120100101@email.szu.edu.cn
引文:唐剑炬,付洪忱.方波外场下有限维量子系统的控制协议[J]. 深圳大学学报理工版,2015,32(5):441-448.
更新日期/Last Update: 2015-09-15