[1]廖日军,李雄军,徐健杰,等.Arnold变换在二值图像置乱应用中若干问题讨论[J].深圳大学学报理工版,2015,32(4):428-433.[doi:10.3724/SP.J.1249.2015.04428]
 Liao Rijun,Li Xiongjun,Xu Jianjie,et al.Discussions on applications of Arnold transformation in binary image scrambling[J].Journal of Shenzhen University Science and Engineering,2015,32(4):428-433.[doi:10.3724/SP.J.1249.2015.04428]
点击复制

Arnold变换在二值图像置乱应用中若干问题讨论()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第4期
页码:
428-433
栏目:
电子与信息科学
出版日期:
2015-07-16

文章信息/Info

Title:
Discussions on applications of Arnold transformation in binary image scrambling
文章编号:
201504015
作者:
廖日军李雄军徐健杰李金龙冼建标何小雨
深圳大学物理科学与技术学院,深圳 518060
Author(s):
Liao Rijun Li Xiongjun Xu Jianjie Li Jinlong Xian Jianbiao and He Xiaoyu
College of Physics Science and Technology, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
计算机应用置乱变换Arnold变换二值图像Arnold逆变换图像加密
Keywords:
computer application scrambling transform Arnold transformation binary image anti-Arnold transformation image encryption
分类号:
U 491.1
DOI:
10.3724/SP.J.1249.2015.04428
文献标志码:
A
摘要:
针对二值图像的特点,讨论了二维Arnold变换在二值图像置乱中的置乱周期问题,提出一种快速Arnold变换策略,即少点置乱法,分析比较Arnold逆变换方法,针对一步恢复原图中直接求矩阵乘方会产生当矩阵元素过大超出运算精度限制时的结果错误问题,提出一种迭代取模伴随矩阵逆变换法.研究结果表明,经Arnold置乱的二值图像,其置乱周期有可能是Arnold变换周期的1/2;只对二值图像中占像素比例较小的像素进行置乱的变换策略,可提高置乱速度;对变换矩阵迭代取模后再求伴随矩阵,可得到正确的一步恢复矩阵.二值图像Arnold变换中,综合应用少点置乱法和一步恢复图像方法,可显著提高变换与反变换的速度.
Abstract:
Considering the characteristics of binary images scrambled by Arnold transformation, we discuss the scrambling period for binary images and propose an efficient Arnold transformation strategy, namely scrambling on fewer pixels (SFP). By analyzing and comparing different anti-Arnold transformation methods, we present a one-step image recovery method, the adjoint matrix recovery after iteratively moduloing (AMRAIM), which aims to avoid the error caused by accuracy limitations when directly computing the transform matrix power. Experimental results show that the scrambling period for scrambled binary images may be one half of that of the Arnold transformation depending on the image contents. The calculation speed is improved by scrambling pixels with less proportion in constituting the binary image. By iteratively moduloing the transformation matrix, we obtain the one-step Arnold transformation and its adjoint matrix for anti-Arnold transformation, which recovers the original image in a single step. Combining SFP and ARMAIM in binary image scrambling by Arnold transformation, the computational efficiency is improved.

参考文献/References:

[1] Li Xiongjun.A generalized matrix-based scrambling transformation and its properties[C]// Proceedings of the 9th International Conference for Young Computer Scientists.Huangshan(China):China Computer Federation, 2008:1429-1434.
[2] Kong Tao,Zhang Dan.A new anti-Arnold transformation algorithm[J].Journal of Software, 2004,15(10):1558-1563.(in Chinese)
孔涛,张亶.Arnold反变换的一种新算法[J].软件学报,2004,15(10):1558-1563.
[3] Zou Jiancheng,Tie Xiaoyun.Arnold transformation of digital image with two dimensions and its periodicity[J].Journal of North China University of Technology,2000,12(1):10-14.(in Chinese)
邹建成,铁小匀.数字图像的二维Arnold变换及其周期性[J].北方工业大学学报,2000,12(1):10-14.
[4] Mao Leibo.Research on Arnold transformation algorithm and anti-arnold transformation algorithm[J].Journal of Chongqing Technology and Business University Natural Science Edition,2012,29(3):16-21.(in Chinese)
毛雷波.Arnold变换及其逆变换[J].重庆工商大学学报自然科学版,2012,29(3):16-21.
[5] Wu Faen,Zou Jiancheng.Some necessary conditions for the periodicity of Arnold transformation of digital image with two dimensions[J].Journal of North China University of Technology,2001,125(6):66-69.(in Chinese)
吴发恩,邹建成.数字图像二维Arnold变换周期的一组必要条件[J].北方工业大学学报,2001,125(6):66-69.
[6] Arnold V J,Avez A.Ergodic problems of classical mechanics,mathematical physics monograph series[M].New York:W A Ben-jamin Inc,1968.
[7] Sun Xiaolong,Wang Zhengyong,He Xiaohai.Appli-cation of Arnold transformation in non-square image scrambling [J].Journal of Terahertz Science and Electronic Information Technology,2014(2):248-251.(in Chinese)
孙晓龙,王正勇,何小海.Arnold变换在非方阵图像置乱中的应用[J].太赫兹科学与电子信息学报,2014(2):248-251.
[8] Liang Ting,Li Min,He Yujie,et al.Method of improved image scrambling based on Arnold transform [J].Computer Engineering and Applications,2013,49(11):204-207.(in Chinese)
梁婷,李敏,何玉杰,等.基于Arnold变换的改进图像加密算法研究[J].计算机工程与应用,2013,49(11):204-207.
[9] Xu Haibo.Arnold transform algorithm for binary images[J].Software Guide, 2011,10(10): 68-70.(in Chinese)
徐海波.基于Arnold变换的二值图像算法[J].软件导刊, 2011,10(10):68-70.
[10] Wang Xinxin,Bu Ting.An evaluation alorithm of image scrambling degree based on the image area[J].Journal of Anhui University Natural Science Edition,2011,35(4):48-52.(in Chinese)
王新新,布挺.基于图像表面积的置乱程度评价算法[J]. 安徽大学学报自然科学版,2011,35(4):48-52.
[11] Xu Jiangfeng,Yang You.Analysis of scrambling performance of encrypted image[J].Computer Science,2006,33(3):110-113.(in Chinese)
徐江峰,杨有.加密图像置乱性能分析[J].计算机科学,2006,33(3):110-113.

相似文献/References:

[1]蔡华利,刘鲁,樊坤,等.基于BPSO的web服务推荐策略[J].深圳大学学报理工版,2010,27(1):49.
 CAI Hua-li,LIU Lu,FAN Kun,et al.Web services recommendation based on BPSO[J].Journal of Shenzhen University Science and Engineering,2010,27(4):49.
[2]朱泽轩,张永朋,尤著宏,等.高通量DNA测序数据压缩研究进展[J].深圳大学学报理工版,2013,30(No.4(331-440)):409.[doi:10.3724/SP.J.1249.2013.04409]
 Zhu Zexuan,Zhang Yongpeng,You Zhuhong,et al.Advances in the compression of high-throughput DNA sequencing data[J].Journal of Shenzhen University Science and Engineering,2013,30(4):409.[doi:10.3724/SP.J.1249.2013.04409]
[3]张滇,明仲,刘刚,等.基于传感器节点的无线接收信号强度研究(英文)[J].深圳大学学报理工版,2014,31(1):63.[doi:10.3724/SP.J.1249.2014.01063]
 Zhang Dian,Ming Zhong,Liu Gang,et al.An empirical study of radio signal strength in sensor networks using MICA2 nodes[J].Journal of Shenzhen University Science and Engineering,2014,31(4):63.[doi:10.3724/SP.J.1249.2014.01063]
[4]柴变芳,曹欣雨,魏春丽,等.一种主动半监督大规模网络结构发现算法[J].深圳大学学报理工版,2020,37(3):243.[doi:10.3724/SP.J.1249.2020.03243]
 CHAI Bianfang,CAO Xinyu,WEI Chunli,et al.An active semi-supervised structure exploring algorithm for large networks[J].Journal of Shenzhen University Science and Engineering,2020,37(4):243.[doi:10.3724/SP.J.1249.2020.03243]
[5]李雄军,廖日军,李金龙,等.图像Arnold变换中的准对称性问题与半周期现象[J].深圳大学学报理工版,2015,32(6):551.[doi:10.3724/SP.J.1249.2015.06551]
 Li Xiongjun,Liao Rijun,Li Jinlong,et al.Quasi-symmetry and the half-cycle phenomenon in scrambling degrees for images with pixel locations scrambled by Arnold transformation[J].Journal of Shenzhen University Science and Engineering,2015,32(4):551.[doi:10.3724/SP.J.1249.2015.06551]

备注/Memo

备注/Memo:
Received:2015-05-03;Accepted:2015-06-09
Foundation:University Students’ Innovation and Entrepreneurship Training Program Foundation of Shenzhen University(201510590079)
Corresponding author:Associate professor Li Xiongjun.E-mail:lixj@szu.edu.cn
Citation:Liao Rijun,Li Xiongjun,Xu Jianjie,et al.Discussions on applications of Arnold transformation in binary image scrambling[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(4): 428-433.(in Chinese)
基金项目:深圳大学大学生创新创业训练计划项目(201510590079)
作者简介:廖日军(1992—),男(汉族),广东省梅州市人,深圳大学本科生.E-mail:2012180045@email.szu.edu.cn
引文:廖日军,李雄军,徐健杰,等.Arnold变换在二值图像置乱应用中若干问题讨论[J]. 深圳大学学报理工版,2015,32(4):428-433.
更新日期/Last Update: 2015-06-30