[1]刘海涛,魏明海,林坤,等.斜拉索耦合振动模型及其参数分析[J].深圳大学学报理工版,2015,32(3):231-238.[doi:10.3724/SP.J.1249.2015.03231]
 Liu Haitao,Wei Minghai,Lin Kun,et al.Coupled vibration model of cables and its parameter analysis[J].Journal of Shenzhen University Science and Engineering,2015,32(3):231-238.[doi:10.3724/SP.J.1249.2015.03231]
点击复制

斜拉索耦合振动模型及其参数分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第3期
页码:
231-238
栏目:
土木建筑工程
出版日期:
2015-05-20

文章信息/Info

Title:
Coupled vibration model of cables and its parameter analysis
文章编号:
201503002
作者:
刘海涛1魏明海2林坤1肖仪清1
1) 哈尔滨工业大学深圳研究生院,深圳 518055
2) 沈阳建筑大学营造与工程管理系,沈阳 110168
Author(s):
Liu Haitao1 Wei Minghai2 Lin Kun1 and Xiao Yiqing1
1) Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, P.R.China
2) Department of Construction and Engineering Management, Shenyang Jianzhu University, Shenyang 110168, P.R.China
关键词:
结构力学索支撑结构斜拉索耦合模型幅频响应参数振动非线性振动
Keywords:
structural mechanics cable-supported structures cable coupled model frequency response parametric vibration nonlinear vibration
分类号:
TU 311.3
DOI:
10.3724/SP.J.1249.2015.03231
文献标志码:
A
摘要:
考虑支撑构件对斜拉索参数振动的影响,从整体振动角度研究斜拉索的非线性参数振动特性,提出一个耦合索支撑结构模型.该模型既考虑了斜拉索的几何非线性,也考虑了支撑构件的运动对斜拉索振动的影响. 应用多尺度法对该模型进行摄动分析,得到该模型参数振动时的激励频率及稳定区域边界,讨论模型质量比、刚度比和倾角等参数对幅频响应及稳定性的影响.研究表明,索的非线性参数振动特性并不随质量比和刚度比单调递增,而是存在某一临界值,使索的非线性参数振动特性最大化;随着倾斜角度的增加,索的非线性参数振动特性是单调递增.
Abstract:
Considering the effects of cable-supported structures on cable parametric vibration, this paper presents an analysis of nonlinear parametric vibration and the chaotic dynamics of a cable using a coupled cable-beam model in which both the coupled behavior between the beam and the cable and the geometric nonlinearities of the cable are taken into account. By applying the multiple scale method to the model directly, we obtain the frequency response of cables and stability conditions. The effects of the mass ratio, stiffness ratio, and the inclined angle of the coupled model are then evaluated. The results show that the property of nonlinear parametric vibration of cables is not increasing monotonously with the mass and stiffness ratios. There is a critical value that maximizes the property of nonlinear parametric vibration of cables, and the property of nonlinear parametric vibration of cables increases monotonously with the inclined angle.

参考文献/References:

[1] Warminski J. Nonlinear normal modes of a self-excited system driven by parametric and external excitations[J]. Nonlinear Dynamics, 2010, 61(4):677-689.
[2] Zhang He, Xie Xu, Zhao Junliang. Parametric vibration of carbon fiber reinforced plastic cables with damping effects in long-span cable-stayed bridges[J]. Journal of Vibration and Control, 2011, 17(14):2117-2130.
[3] Kang Houjun, Zhao Yueyu,Zhu Haiping. Linear and nonlinear dynamics of suspended cable considering bending stiffness[J]. Journal of Vibration and Control,2013.
[4] Kamel M, Hamed Y. Nonlinear analysis of an elastic cable under harmonic excitation[J]. Acta Mechanica,2010,214(3):315-325.
[5] Gu Ming, Ren Shuyan. Parametric vibration of stay cables under axial narrow-band stochastic excitation[J]. Journal of Structural Stability and Dynamics, 2013,13(8) :1350035-1-1350035-21.
[6] Raeesi A, Cheng S, Ting D S K. A two-degree-of-freedom aeroelastic model for the vibration of dry cylindrical body along unsteady air flow and its application to aerodynamic response of dry inclined cables[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130(10):108-124.
[7] Tagata G. Harmonically forced, finite amplitude vibration of a string[J]. Journal of Sound and Vibration, 1977, 51(4):483-492.
[8] Perkins N C. Modal interactions in the non-linear response of elastic cables under parametric/external excitation[J]. International Journal of Non-linear Mechanics, 1992, 27(2):233-250.
[9] Berlioz A, Lamarque C H. A non-linear model for the dynamics of an inclined cable[J]. Journal of Sound and Vibration, 2005, 279(3/4/5): 619-639.
[10] Wang Lianhua, Zhao Yueyu. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions[J]. Journal of Sound and Vibration, 2009, 327(1/2): 121-133.
[11] Macdonald J H G, Dietz M S, Neild S A, et al. Genera-lised modal stability of inclined cables subjected to support excitations[J]. Journal of Sound and Vibration, 2010, 329(21): 4515-4533.
[12] Luongo A, Zulli D. Dynamic instability of inclined cables under combined wind flow and support motion[J]. Nonlinear Dynamics, 2012, 67(1): 1-17.
[13] Caetano E,Cunha A,Taylor C A.Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge: part I modal analysis[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(4):481-498.
[14] Caetano E, Cunha A, Taylor C A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge: part II seismic response[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(4):499-521.
[15] Georgakis C T, Taylor C A. Nonlinear dynamics of cable stays: part 1 sinusoidal cable support excitation[J]. Journal of Sound and Vibration, 2005, 281(3/4/5):537-564.
[16] Georgakis C T, Taylor C A. Nonlinear dynamics of cable stays: part 2 stochastic cable support excitation[J]. Journal of Sound and Vibration, 2005, 281(3/4/5):565-591.
[17] Caetano E, Cunha A, Gattulli V, et al. Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite element modelling[J]. Structural Control & Health Monitoring, 2008, 15(3):237-264.
[18] Kang Zhan, Zhong Wanxie. Numerical study on parametric resonance of cable in cable stayed bridge[J]. China Civil Engineering Journal,1998, 31(4): 14-22.(in Chinese)
亢战, 钟万勰. 斜拉桥参数共振问题的数值研究[J]. 土木工程学报, 1998, 31(4): 14-22.
[19] Luo Shuai, Liu Hongjun, Wang Gang. The characteristic of stay-cable damping system in consideration of bridge deck vibration[J]. Journal of Shenzhen University Science and Engineering,2010, 27(4): 470-474.(in Chinese)
罗帅, 刘红军, 王刚. 考虑桥面运动的斜拉索减振模型[J]. 深圳大学学报理工版, 2010, 27(4): 470-474.

[20] Zhou Dai, Liu Jie, Guo Junhui, et al. Vibration response of cables in cable-stayed spatial structures under axial excitaiton[J]. Engineering Mechanics, 2007, 24(3):34-41.(in Chinese)
周岱, 柳杰, 郭军慧,等. 轴向激励下斜拉索大幅振动分析[J]. 工程力学, 2007, 24(3):34-41.
[21] Li Fengchen, Tian Shizhu, Ou Jinping. Study on the parameter vibration of the large-span cable-stayed bridge[J]. Journal of Shenyang Jianzhu University Natural Science, 2008, 24(5): 737-742.(in Chinese)
李凤臣, 田石柱, 欧进萍. 大跨度斜拉桥拉索的参数振动[J]. 沈阳建筑大学学报自然科学版, 2008, 24(5): 737-742.
[22] Wei Minghai, Xiao Yiqing, Liu Haitao. Bifurcation and chaos of a cable-beam coupled system under simultaneous internal and external resonances[J]. Nonlinear Dynamics,2012, 67(3): 1969-1984.
[23] Zhou Haibing. The experimental investigation on nonlinear dynamics of cable-beam structure[D].Changsha: Hunan University,2007.(in Chinese)
周海兵. 索-梁组合结构非线性线性动力学实验研究[D]. 长沙:湖南大学,2007.
[24] Xia Yong, Zhang Jing, Xu Youlin, et al. Parametric oscillation of cables and aerodynamic effect[J]. Frontiers of Architecture and Civil Engineering in China, 2010,4(3):321-325.
[25] Xu Y L, Ko J M, Zhang W S. Vibration studies of Tsing Ma Suspension Bridge[J].Journal of Bridge Engineering, 1997,2(4):149-156.
[26] Warnitchai P, Fujino Y, Susumpow T. A nonlinear dynamic model for cables and its application to a cable-structure system[J]. Journal of Sound and Vibration, 1995, 187(4): 695-712.
[27] Kevorkian J, Cole J D. Perturbation methods in applied mathematics[M]. New York(USA): Springer-Verlag, 1981.

相似文献/References:

[1]许颖,王鹏.汽车碰撞波形梁半刚性护栏的简化计算[J].深圳大学学报理工版,2012,29(No.4(283-376)):364.[doi:10.3724/SP.J.1249.2012.04364]
 XU Ying and WANG Peng.Simplified calculation method for car crashing wave-beam semi-rigid barrier process[J].Journal of Shenzhen University Science and Engineering,2012,29(3):364.[doi:10.3724/SP.J.1249.2012.04364]
[2]王金轮,周云郊,兰凤崇.客车与半刚性双波梁护栏碰撞过程的研究[J].深圳大学学报理工版,2015,32(3):324.[doi:10.3724/SP.J.1249.2015.03324]
 Wang Jinlun,Zhou Yunjiao,and Lan Fengchong.Collision process between coach and semi-rigid dual-wave barrier[J].Journal of Shenzhen University Science and Engineering,2015,32(3):324.[doi:10.3724/SP.J.1249.2015.03324]

备注/Memo

备注/Memo:
Received:2014-09-11;Accepted:2015-03-24
Foundation:National Natural Science Foundation of China(51078119);Fund of National Engineering and Research Center for Highways in Mountain Area (gsgzj-2013-03) ;Fund of Key Laboratory of Bridge Earthquake Resistance Technology, Ministry of Communications(201301)
Corresponding author:Lecturer Wei Minghai. Email: hitsz.civil@gmail.com.cn
Citation:Liu Haitao, Wei Minghai, Lin Kun, et al. Coupled vibration model of cables and its parameter analysis[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3): 231-238.(in Chinese)
基金项目:国家自然科学基金资助项目(51078119);国家山区公路工程技术研究中心开放基金资助项目(gsgzj-2013-03); 桥梁结构抗震技术交通行业重点实验室开发基金资助项目(201301)
作者简介:刘海涛(1982—),男(汉族),山东省曹县人,哈尔滨工业大学深圳研究生院助理实验师.E-mail:liuhaitao@hitsz.edu.cn
引文:刘海涛,魏明海,林坤,等.斜拉索耦合振动模型及其参数分析[J]. 深圳大学学报理工版,2015,32(3):231-238.
更新日期/Last Update: 2015-05-11