Zhao Yunyan,Li Zhong,Chen Danni,et al.Systematic regulatory network of gamma-aminobutyric acid receptor genes[J].Journal of Shenzhen University Science and Engineering,2015,32(2):128-136.[doi:10.3724/SP.J.1249.2015.02128]





Systematic regulatory network of gamma-aminobutyric acid receptor genes
Zhao Yunyan1 Li Zhong1 Chen Danni2 Lei Qingfeng1 He Lu1 and Wei Rui1
1) Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P.R.China
2) College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R.China
molecular biology gamma-aminobutyric acid (GABA) receptor open chromatin transcription regulation transcription factor nuclear envelop spectrin repeatprotein-1 (Nesprin-1)
R 338.2; Q 426
提出一种多学科交叉结合的策略,试图初步获得系统性调控γ-氨基丁酸(gamma-aminobutyric acid, GABA)受体基因的转录因子线索. 利用基于功能基因组学方法的DNA元件百科全书计划已发表的数据,系统性地获得GABA受体基因的开放染色质序列,并以此作为固相化探针,捕获与其特异性相互作用的蛋白质分子,并利用质谱分析鉴定蛋白. 结果发现,对不同脑区获得的核蛋白,探针都能捕获到同样的特异性条带,然而,作为对照的天门冬氨酸(N-methyl-D-aspartate, NMDA)受体基因相关的开放染色质探针,在不同脑区中并未检获上述特异信号,说明结合蛋白是特异的. 质谱分析表明,与GABA受体基因相关的开放染色质特异相互作用的蛋白是核膜血影重复蛋白-1(nuclear envelop spectrin repeatprotein-1, Nesprin-1),又称synaptic nuclear envelope-1(SYNE-1). 进一步的调控网络生物信息学分析表明,Nesprin-1可能与MAFA、IRX2、BCL6、CEBPA以及RP58等转录因子形成复合物,并与GABA受体基因GABRA5、GABRA6、GABBR1和GABBR2等共表达. 表明GABA受体基因在不同脑区是通过相同的转录调控机制进行表达的,Nesprin-1可能与MAFA、IRX2、BCL6、CEBPA以及RP58等转录因子形成复合物进而调控GABA受体基因表达,该特异的转录因子调控网络有望用于诱导多能干细胞或是前体细胞直接分化为GABA能神经元.
By using a multidisciplinary strategy, we try to systematically find out the transcription factors that regulate gamma-aminobutyric acid (GABA) receptor expression. Based on the published data in the encyclopedia of DNA elements (ENCODE), we obtain open chromatin sequences of GABA receptor genes. These sequences are used as solid phase probes to capture the specific proteins that could interact with the sequences directly. The captured protein is identified with mass spectrometry for further regulatory network analysis. The experimental results show that the GABA receptor gene probes can capture one specific band in different brain domains while the N-methyl-D-aspartate (NMDA) gene probes, which are designed as negative control, could not capture this specific band. Mass spectrometry results indicate that the protein, which could specifically bind with GABA receptor gene open chromatin sequence, is nuclear envelop spectrin repeatprotein-1(Nesprin-1)(synaptic nuclear envelope-1, SYNE-1). Further bioinformatics analysis results suggest that Nesprin-1 could form a complex with transcription factors such as MAFA, IRX2, BCL6, CEBPA and RP58 and could co-express with GABA receptor genes such as GABRA5, GABRA6, GABBR1 and GABBR2. In conclusion, GABA receptor genes are regulated through the same transcriptional regulation mechanism in different brain domains. Nesprin-1 could interact with transcription factors such as MAFA, IRX2, BCL6, CEBPA and RP58 to form a regulatory complex that regulates the expression of GABA receptor genes. This specific regulatory network can be used as a tool for further inductions of the differentiation of embryonic stem cells or other stem cells into GABA receptor expressing neurons.


[1] Mary Chebib, Graham A R J. The ‘ABC’ of GABA receptors: a brief review[J]. Clinical and Experimental Pharmacology and Physiology, 1999, 26(11): 937-940.
[2] Ni Jiazuan,Chen Ping,Liu Qiong,et al. Advance research on strategies for the prevention of Alzheimer’s disease [J].Journal of Shenzhen University Science and Engineering,2013,30(4):331-348.(in Chinese)
倪嘉缵, 陈平, 刘琼, 等. 阿尔茨海默病的防治策略研究进展[J]. 深圳大学学报理工版, 2013, 30(4): 331-348.
[3] Li Jing, Du Yongping, Zhang Yueping. Effects of hypoxia on glutamatergic and GABAergic synaptic transmission[J]. Chinese Journal of Pathophysiology, 2013, 29(2):371-375.(in Chinese)
李晶, 杜永平, 张月萍. 缺氧对谷氨酸能和GABA能突触传递的影响[J]. 中国病理生理杂志, 2013, 29(2):371-375.
[4] Song Lingyun, Zhang Zhancheng, Grasfeder L L, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity[J]. Genome Research, 2011, 21(10):1757-1767.
[5] Jutras B L, Verma A, Stevenson B. Identification of novel DNA-binding proteins using DNA affinity chromatography-pull down[J]. Current Protocols in Microbiology, 2012, 24:1F.1.1-1F.1.13.
[6] Warren D T, Zhang Qiuping, Weissberg P L, et al. Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function[J]. Expert Reviews in Molecular Medicine, 2005, 7(11):1-15.
[7] Zhang Qiuping, Skepper J N, Yang Fangtang, et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues[J]. Journal of Cell Science, 2001, 114(Pt 24):4485-4498.
[8] Zhang Xiaochang,Lei Kai,Yuan Xiaobing,et al.SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice[J]. Neuron, 2009, 64(2):173-187.
[9] Feng Yuanyi, Walsh C A. Protein-protein interactions, cytoskeletal regulation and neuronal migration[J]. Nature Reviews Neuroscience, 2001, 2(6):408-416.
[10] Tsai J W, Bremner K H, Vallee R B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue[J]. Nature Neuroscience, 2007, 10(8):970-979.
[11] Tsai L H, Gleeson J G. Nucleokinesis in neuronal migration[J]. Neuron, 2005, 46(3):383-388.
[12] Wynshaw-Boris A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development[J]. Clinical Genetics, 2007, 72(4):296-304.
[13] Gros-Louis F, Dupre N, Dion P, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia[J]. Nature Genetics, 2007, 39(1):80-85.
[14] Zhang Jingyao, Poh H M, Peh S Q, et al. ChIA-PET analysis of transcriptional chromatin interactions[J]. Methods, 2012, 58(3):289-299.


 HU Zhang-li,SHU Long-fei,and GOU De-ming.MicroRNAs quantification and related target genes for response to sulfur deprivation in Chlamydomonas reinhardtii[J].Journal of Shenzhen University Science and Engineering,2011,28(2):237.
 Zhao Qingzhe,Liang Chao,and Mo Beixin.Identification of novel components of Arabidopsis miRNA pathway and mutant analysis[J].Journal of Shenzhen University Science and Engineering,2017,34(2):464.[doi:10.3724/SP.J.1249.2017.05464]
 LOU Sulin,ZHU Xiulan,ZENG Zhiyong,et al.Bioinformatics analysis of Dunaliella microRNAs by high-throughput sequencing[J].Journal of Shenzhen University Science and Engineering,2018,35(2):331.[doi:10.3724/SP.J.1249.2018.04331]
 LOU Sulin,LIN Xin,HUANG Simin,et al.Cloning and bioinformatics analysis of CrDRBs in Chlamydomonas reinhardtii[J].Journal of Shenzhen University Science and Engineering,2018,35(2):523.[doi:10.3724/SP.J.1249.2018.05523]
 LI Lin,LUO Linlin,et al.Establishment and evaluation of a method for rapid extraction of plant genomic DNA[J].Journal of Shenzhen University Science and Engineering,2020,37(2):1.[doi:10.3724/SP.J.1249.2020.01001]
 HOU Kaiyue,LOU Sulin,ZENG Zhiyong,et al.Prediction and identification of sulfur-responding circular RNA in Chlamydomonas reinhardtii[J].Journal of Shenzhen University Science and Engineering,2020,37(2):221.[doi:10.3724/SP.J.1249.2020.03221]
 LI Dechang,ZHANG Mingxia,et al.Evaluation of the sensitivity and specificity of ELISA kits for the SARS-CoV-2 diagnosis[J].Journal of Shenzhen University Science and Engineering,2020,37(2):224.[doi:10.3724/SP.J.1249.2020.03224]
 WEI Chaoliang,XIA Ming,and GU Mingyao.RBFox family proteins in function and disease regulation[J].Journal of Shenzhen University Science and Engineering,2020,37(2):514.[doi:10.3724/SP.J.1249.2020.05514]


引文:赵云燕,李中,陈丹妮,等.γ-氨基丁酸受体基因的系统性调控网络[J]. 深圳大学学报理工版,2015,32(2):128-136.
Foundation:Guangdong Medical Science and Technology Research Foundation(A2012211);Guangzhou Tianhe District Science and Technology Key Project (201404KW028)
Corresponding author:Chief physician Li Zhong.E-mail: zslyjohn@163.com
Citation:Zhao Yunyan, Li Zhong, Chen Danni, et al.Systematic regulatory network of gamma-aminobutyric acid receptor genes[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(2): 128-136.(in Chinese)
更新日期/Last Update: 2015-03-12