[1]罗仲宽,尹春丽,吴其兴,等.有机电解液型锂空气电池空气电极研究进展[J].深圳大学学报理工版,2015,32(2):111-120.[doi:10.3724/SP.J.1249.2015.02111]
 Luo Zhongkuan,Yin Chunli,Wu Qixing,et al.Research progress on air electrode in organic electrolyte lithium-air battery[J].Journal of Shenzhen University Science and Engineering,2015,32(2):111-120.[doi:10.3724/SP.J.1249.2015.02111]
点击复制

有机电解液型锂空气电池空气电极研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第2期
页码:
111-120
栏目:
材料科学
出版日期:
2015-03-20

文章信息/Info

Title:
Research progress on air electrode in organic electrolyte lithium-air battery
文章编号:
201502001
作者:
罗仲宽尹春丽吴其兴王芳黄洋李豪君魏蒙蒙
深圳市新型锂离子电池与介孔材料重点实验室,深圳大学化学与化工学院,深圳 518060
Author(s):
Luo ZhongkuanYin Chunli Wu Qixing Wang Fang Huang Yang Li Haojun and Wei Mengmeng
Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
应用化学锂空气电池空气电极反应机理碳材料催化剂
Keywords:
applied chemistry lithium-air battery air electrode reaction mechanism carbon materials catalysts
分类号:
O 69
DOI:
10.3724/SP.J.1249.2015.02111
文献标志码:
A
摘要:
有机电解液体系的锂空气电池因其超高能量密度受到广泛关注. 为寻求高性能、安全实用的锂空气电池,国内外就正极材料、催化剂、电解液和锂负极等开展了大量研究,其中空气电极的优化、电解液的稳定性是锂空气电池高性能发挥的关键. 介绍了近年有机电解液锂空气电池空气电极上的反应机理、空气电极影响因素、正极材料和催化剂等最新研究进展,分析了各类多孔材料和催化剂的优缺点,及其对电池电化学性能的影响,结合本课题组研究成果,指出了锂空气电池空气电极的发展方向,即结合新型复合氧化物催化剂,构筑独特的多孔电极结构,以实现高容量、长寿命的锂空气电池.
Abstract:
Due to the advantages of ultra-high energy density, lithium-air batteries based on organic electrolyte system have received widespread concern. To seek after a high-performance, safety and applicable lithium-air battery, a lot of scholars have conducted numerous research works on cathode materials, catalysts, electrolyte, and lithium cathode. Air electrode optimization and electrolyte stability are the keys to obtaining high performance lithium-air batteries. We review some of the latest research progress on air electrode reaction mechanisms, influence factors of air electrode, materials for air cathode and catalysts in organic electrolyte lithium-air batteries. Meanwhile, advantages and disadvantages of all kinds of porous materials and catalysts, as well as impact on the electrochemical performance of batteries, were analysed. Based on these studies, we put forward the future direction for air electrodes of lithium-air batteries is to build a unique porous electrode structure with new composite oxide catalysts, to achieve high-capacity, long-life lithium-air batteries.

参考文献/References:

[1] Rahman M A, Wang X, Wen C. A review of high energy density lithium-air battery technology[J].Journal of Applied Electrochemistry, 2013, 44(1): 5-22.
[2] Guo Xiangxin, Huang Shiting, Zhao Ning, et al. Rapid development and critical issues of secondary lithium-air batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123.(in Chinese)
郭向欣, 黄诗婷, 赵宁, 等. 二次锂空气电池研究的快速发展及其急需解决的关键科学问题[J]. 无机材料学报, 2014, 29(2): 113-123.
[3] Hu Xinguo. Power battery technology and application[M]. Beijing: Chemical Industry Press, 2013: 277-290.(in Chinese)
胡信国. 动力电池技术与应用[M]. 北京: 化学工业出版社, 2013: 277-290.
[4] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium oxygen battery[J]. Journal of the Electrochem Society, 1996, 143(1): 1-5.
[5] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Materials, 2006, 128(4): 1390-1393.
[6] Lu Jun, Li Li, Park J B, et al. Aprotic and aqueous Li-O2 batteries[J]. Chemical Reviews, 2014, 114: 5611-5640.
[7] Balaish M, Kraytsberg A, Ein-Eli Y. A critical review on lithium-air battery electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 2801-2822.
[8] Kang S J, Mori T, Narizuka S, et al. Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium-oxygen cells[J]. Nature Communications, 2014, 5: 3937-3943.
[9] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium-air battery[J]. Nature Communications, 2012, 4(7): 579-585.
[10] Peng Zhangquan, Freunberger S A, Chen Yuhui, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[11] Peng Zhangquan, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie International Edition. 2011, 123(28): 6475 -6479.
[12] Chen Yuhui, Freunberger S A, Peng Zhangquan, et al. Li-O2 battery with a dimethylformamide electrolyte[J]. Journal of the American Chemical Society, 2012, 134(18): 7952-7957.
[13] Mccloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries[J].The Journal of Physical Chemistry C, 2012, 116(45): 23897-23905.
[14] Nanda J, Bilheux H, Voisin S, et al. Anomalous discharge product distribution in lithium-air cathodes[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8401-8408.
[15] Laoire C O, Mukerjee S, Abraham K M. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable[J]. Journal of the Physical Chemisty C, 2010, 114(19): 9178-9186.
[16] Cao Ruiguo, Walter E D, Xu Wu, et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries[J]. ChemSusChem, 2014, 7(9): 2436-2440.
[17] Jiang Xie, Liu Xiaofei, Zhao Shiyong, et al. Research progress of organic electrolyte based lithium-air batteries[J]. Acta Chimica Sinica, 2014, 72: 417-426.(in Chinese)
蒋颉, 刘晓飞, 赵世勇, 等. 基于有机电解液的锂空气电池研究进展[J]. 化学学报, 2014, 72: 417-426.
[18] Zhang Yining, Zhang Huamin, Li Jing, et al. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery[J]. Journal of Power Sources. 2013, 240: 390-396.
[19] Bardenhagen I, Dreher W, Fenske D, et al. Fluid distribution and pore wettability of monolithic carbon xerogels measured by 1H NMR relaxation[J]. Carbon, 2014, 68: 542-552.
[20] Meini S, Piana M, Beyer H, et al. Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(12): A2135-A2142.
[21] Mirzaeian M, Hall P J, Sillars F B, et al. The effect of operation conditions on the performance of lithium/oxygen batteries[J]. Journal of the Electrochemical Society, 2012, 160(1): A25-A30.
[22] Xue K H, Nguyen T K, Franco A A. Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model[J]. Journal of the Electrochemical Society, 2014, 161(8): E3028-E3035.
[23] Xu Jijing, Wang Zhongli, Xu Dan, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4: 2438-2447.
[24] Cui Yanming, Wen Zhaoyin, Liu Yu. A free-standing-type design for cathodes of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(11): 4727-4734.
[25] Li Xianglin, Faghri A. Optimization of the cathode structure of lithium-air batteries based on a two-dimensional, transient, non-isothermal model[J]. Journal of the Electrochemical Society, 2012, 159(10): A1747-A1754.
[26] Ma Zhong, Yuan Xiangxia, Sha Haodong, et al. Influence of cathode process on the performance of lithium-air batteries[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11004-11010.
[27] Li Qing, Cao Ruiguo, Cho J, et al. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13568-13582.
[28] Park C K, Park S B, Lee S Y, et al. Electrochemical performances of lithium-air cell with carbon materials[J]. Bulletin of the Korean Chemical Society, 2010, 31(11): 3221-3224.
[29] Xiao Jie, Wang Donghai, Xu Wu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): A487-A492.
[30] Al-muhtaseb, Ritter J A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels[J]. Advance Materials, 2003, 15(2): 101-114.
[31] Wang Fang, Xu Yanghai, Luo Zhongkuan, et al. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery[J]. Journal of Power Sources, 2014, 272: 1061-1071.
[32] Ma S B, Lee D J, Roev V, et al. Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery[J]. Journal of Power Sources, 2013, 244: 494-498.
[33] Nie Hongjiao, Zhang Yining, Li Jing, et al. Synthesis of a meso-macro hierarchical porous carbon material for improvement of O2 diffusivity in Li-O2 batteries[J]. RSC Advances, 2014, 4(33): 17141-17145.
[34] Chen Yong, Li Fujun, Tang Daiming, et al. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13076-13081.
[35] Mi Rui, Liu Hao, Wang Hao, et al. Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries[J]. Carbon, 2014, 67: 744-752.
[36] Li Yongliang, Wang Jiajun, Li Xifei, et al. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J]. Electrochemistry Communications, 2011, 13(7): 668-672.
[37] Lim H D, Song H, Gwon H, et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries[J]. Energy & Environmental Science, 2013, 6(12): 3570-3575.
[38] Huang Shu, Wang Wei, Wang Kangli, et al. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-94.(in Chinese)
黄澍, 王玮, 王康丽, 等. 石墨烯在化学储能中的研究进展[J]. 储能科学与技术, 2014, 3(2): 85-94.
[39] Kim H, Lim H D, Kim J, et al. Graphene for advanced Li/S and Li/air batteries[J]. Journal of Materials Chemistry A, 2014, 2(1):33-47.
[40] Li Yongliang, Wang Jiajun, Li Xifei, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery[J]. Chemical Communications (Cambridge), 2011, 47(33): 9438-9440.
[41] Lim H D, Gwon H, Kim H, et al. Mechanism of Co3O4/graphene catalytic activity in Li-O2 batteries using carbonate based electrolytes[J]. Electrochimica Acta, 2013, 90: 63-70.
[42] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
[43] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11): 1050-1056.
[44] Zhao Guangyu, Mo Runwei, Wang Baoyu, et al. Enhanced cyclability of Li-O2 batteries based on TiO2 supported cathodes with no carbon or binder[J]. Chemistry of Materials. 2014, 26(8): 2551-2556.
[45] Dathar G K P,Shelton W A,Xu Y.Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 891-895.
[46] Cheng Fangyi, Chen Jun. Nanoporous catalysts for rechargeable Li-air batteries[J]. Acta Chimica Sinica, 2013, 71(04): 473-477.(in Chinese)
陈方益,陈军. 可充锂空气电池多孔纳米催化剂[J]. 化学进展,2013,71(04): 473-477.
[47] Gittleson F S, Sekol R C, Doubek G, et al. Catalyst and electrolyte synergy in Li-O2 batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3230-3237.
[48] Guo Guilie, Truong T H A, Tan Huiteng, et al. Platinum and palladium nanotubes based on genetically engineered elastin-mimetic fusion protein-fiber templates: synthesis and application in lithium-O2 batteries[J]. Chemistry an Asian Journa, 2014, 9(9): 2555-2559.
[49] Sun Bing, Munroe P, Wang Guoxiu. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Scientific Reports, 2013, 3: 2247-2253.
[50] Lu Yichun, Xu Zhichuan, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemistry Society, 2010, 132(35): 12170-12171.
[51] Li Fujun, Zhang Tao, Zhou Haoshen. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes[J]. Energy & Environmental Science, 2013, 6(4):1125-1141.
[52] Cao Yong, Wei Zhikai, He Jiao, et al. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance[J]. Energy & Environmental Science, 2012, 5(12): 9765-9768.
[53] Sun Chunwen, Li Fan, Ma Chao, et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries[J]. Journal of Materials Chemistry A, 2014, 2(20): 7188.
[54] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(1): 392-396.
[55] Xu Jijing, Xu Dan, Wang Zhongli, et al. Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(14): 3887-3890.
[56] Kalubarme R S, Park G E, Jung K N, et al. LaNixCo1-xO3-perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A880-A889.
[57] Oh S H, Nazar L F. Oxide catalysts for rechargeable high-capacity Li-O2 batteries[J]. Advanced Energy Materials, 2012, 2(7): 903-910.
[58] Nasybulin E, Xu W, Engelhard M H, et al. Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (PEDOT) in Li-O2 battery[J]. Electrochemistry Communications, 2013, 29: 63-66.
[59] Yoon T H, Park Y J. New strategy toward enhanced air electrode for Li-air batteries: apply a polydopamine coating and dissolved catalyst[J]. RSC Advances, 2014, 4(34): 17434-17442.
[60] Kim D S, Park Y J. Effect of multi-catalysts on rechargeable Li-air batteries[J]. Journal of Alloys and Compounds, 2014, 591: 164-169.
[61] Lin Xijing, Lu Xu, Huang Tao, et al. Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries[J]. Journal of Power Sources, 2013, 242: 855-859.
[62] Shui Jianglan, Du Feng, Xue Chenming, et al. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J]. Article, 2014, 8(3): 3015-3022.
[63] Luo Zhongkuan, Liang Chunsheng, Wang Fang, et al. Optimizing main materials for a lithium-air battery of high cycle life[J]. Advanced Functional Materials, 2013, 24(14): 2101-2105.
[64] Bhatt M D, Geaney H, Nolan M, et al. Key scientific challenges in current rechareable non-aqueous Li-O2 batteries: experient and theory[J]. Physical Chemistry Chemical Physics. 2014, 16(24): 12093-12130.

相似文献/References:

[1]唐文伟,桂文池,曾新平.聚硫酸铁铝制备改进及其处理重金属废水[J].深圳大学学报理工版,2011,28(No.3(189-282)):276.
 TANG Wen-wei,GUI Wen-chi,and ZENG Xin-ping.Improvement of preparation of PFAS and its effect on treating heavy metal in wastewater[J].Journal of Shenzhen University Science and Engineering,2011,28(2):276.
[2]张培新,汪静伟,黄亮,等.锂离子电池硅基负极材料研究现状与发展趋势[J].深圳大学学报理工版,2014,31(5):441.[doi:10.3724/SP.J.1249.2014.05441]
 Zhang Peixin,Wang Jingwei,Huang Liang,et al.Research status and development trend on Si-based anode materials of lithium ion batteries[J].Journal of Shenzhen University Science and Engineering,2014,31(2):441.[doi:10.3724/SP.J.1249.2014.05441]
[3]李永亮,马定涛,张培新.静电纺丝制备富锂锰基锂电正极材料及其性能[J].深圳大学学报理工版,2017,34(2):132.
 Li Yongliang,Ma Dingtao,and Zhang Peixin. Electrospinning preparation and performance of lithium-rich manganese-based lithium ion battery cathode material[J].Journal of Shenzhen University Science and Engineering,2017,34(2):132.
[4]杨世利,常家华,邢智,等.铅蓄电池工业场地铅污染分布特征及风险分析[J].深圳大学学报理工版,2019,36(6):649.[doi:10.3724/SP.J.1249.2019.06649]
 YANG Shili,CHANG Jiahua,et al.Distribution characteristics and risk analysis of lead pollution in lead storage battery industrial sites[J].Journal of Shenzhen University Science and Engineering,2019,36(2):649.[doi:10.3724/SP.J.1249.2019.06649]

备注/Memo

备注/Memo:
Received:2014-10-13;Accepted:2014-12-12
Foundation:Natural Science Foundation of Guangdong Province (S2013040016860); Shenzhen Science and Technology Fund (JCYJ20130329102936684)
Corresponding author:Professor Wang Fang.E-mail: wangfsz@szu.edu.cn
Citation:Luo Zhongkuan, Yin Chunli, Wu Qixing, et al.Research progress on air electrode in organic electrolyte lithium-air battery [J]. Journal of Shenzhen University Science and Engineering, 2015, 32(2): 111-120.(in Chinese)
基金项目:广东省自然科学基金资助项目(S2013040016860);深圳市战略新兴产业发展专项基金资助项目(JCYJ20130329102936684)
作者简介:罗仲宽(1962—),男(汉族),浙江省岱山县人,深圳大学教授、博士生导师,E-mail:lzk@szu.edu.cn
引文:罗仲宽,尹春丽,吴其兴,等. 有机电解液型锂空气电池空气电极研究进展[J]. 深圳大学学报理工版,2015,32(2):111-120.
更新日期/Last Update: 2015-03-12