参考文献/References:
[1] Rahman M A, Wang X, Wen C. A review of high energy density lithium-air battery technology[J].Journal of Applied Electrochemistry, 2013, 44(1): 5-22.
[2] Guo Xiangxin, Huang Shiting, Zhao Ning, et al. Rapid development and critical issues of secondary lithium-air batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123.(in Chinese)
郭向欣, 黄诗婷, 赵宁, 等. 二次锂空气电池研究的快速发展及其急需解决的关键科学问题[J]. 无机材料学报, 2014, 29(2): 113-123.
[3] Hu Xinguo. Power battery technology and application[M]. Beijing: Chemical Industry Press, 2013: 277-290.(in Chinese)
胡信国. 动力电池技术与应用[M]. 北京: 化学工业出版社, 2013: 277-290.
[4] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium oxygen battery[J]. Journal of the Electrochem Society, 1996, 143(1): 1-5.
[5] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Materials, 2006, 128(4): 1390-1393.
[6] Lu Jun, Li Li, Park J B, et al. Aprotic and aqueous Li-O2 batteries[J]. Chemical Reviews, 2014, 114: 5611-5640.
[7] Balaish M, Kraytsberg A, Ein-Eli Y. A critical review on lithium-air battery electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 2801-2822.
[8] Kang S J, Mori T, Narizuka S, et al. Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium-oxygen cells[J]. Nature Communications, 2014, 5: 3937-3943.
[9] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium-air battery[J]. Nature Communications, 2012, 4(7): 579-585.
[10] Peng Zhangquan, Freunberger S A, Chen Yuhui, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.
[11] Peng Zhangquan, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angewandte Chemie International Edition. 2011, 123(28): 6475 -6479.
[12] Chen Yuhui, Freunberger S A, Peng Zhangquan, et al. Li-O2 battery with a dimethylformamide electrolyte[J]. Journal of the American Chemical Society, 2012, 134(18): 7952-7957.
[13] Mccloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries[J].The Journal of Physical Chemistry C, 2012, 116(45): 23897-23905.
[14] Nanda J, Bilheux H, Voisin S, et al. Anomalous discharge product distribution in lithium-air cathodes[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8401-8408.
[15] Laoire C O, Mukerjee S, Abraham K M. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable[J]. Journal of the Physical Chemisty C, 2010, 114(19): 9178-9186.
[16] Cao Ruiguo, Walter E D, Xu Wu, et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries[J]. ChemSusChem, 2014, 7(9): 2436-2440.
[17] Jiang Xie, Liu Xiaofei, Zhao Shiyong, et al. Research progress of organic electrolyte based lithium-air batteries[J]. Acta Chimica Sinica, 2014, 72: 417-426.(in Chinese)
蒋颉, 刘晓飞, 赵世勇, 等. 基于有机电解液的锂空气电池研究进展[J]. 化学学报, 2014, 72: 417-426.
[18] Zhang Yining, Zhang Huamin, Li Jing, et al. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery[J]. Journal of Power Sources. 2013, 240: 390-396.
[19] Bardenhagen I, Dreher W, Fenske D, et al. Fluid distribution and pore wettability of monolithic carbon xerogels measured by 1H NMR relaxation[J]. Carbon, 2014, 68: 542-552.
[20] Meini S, Piana M, Beyer H, et al. Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(12): A2135-A2142.
[21] Mirzaeian M, Hall P J, Sillars F B, et al. The effect of operation conditions on the performance of lithium/oxygen batteries[J]. Journal of the Electrochemical Society, 2012, 160(1): A25-A30.
[22] Xue K H, Nguyen T K, Franco A A. Impact of the cathode microstructure on the discharge performance of lithium air batteries: a multiscale model[J]. Journal of the Electrochemical Society, 2014, 161(8): E3028-E3035.
[23] Xu Jijing, Wang Zhongli, Xu Dan, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4: 2438-2447.
[24] Cui Yanming, Wen Zhaoyin, Liu Yu. A free-standing-type design for cathodes of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(11): 4727-4734.
[25] Li Xianglin, Faghri A. Optimization of the cathode structure of lithium-air batteries based on a two-dimensional, transient, non-isothermal model[J]. Journal of the Electrochemical Society, 2012, 159(10): A1747-A1754.
[26] Ma Zhong, Yuan Xiangxia, Sha Haodong, et al. Influence of cathode process on the performance of lithium-air batteries[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11004-11010.
[27] Li Qing, Cao Ruiguo, Cho J, et al. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13568-13582.
[28] Park C K, Park S B, Lee S Y, et al. Electrochemical performances of lithium-air cell with carbon materials[J]. Bulletin of the Korean Chemical Society, 2010, 31(11): 3221-3224.
[29] Xiao Jie, Wang Donghai, Xu Wu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): A487-A492.
[30] Al-muhtaseb, Ritter J A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels[J]. Advance Materials, 2003, 15(2): 101-114.
[31] Wang Fang, Xu Yanghai, Luo Zhongkuan, et al. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery[J]. Journal of Power Sources, 2014, 272: 1061-1071.
[32] Ma S B, Lee D J, Roev V, et al. Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery[J]. Journal of Power Sources, 2013, 244: 494-498.
[33] Nie Hongjiao, Zhang Yining, Li Jing, et al. Synthesis of a meso-macro hierarchical porous carbon material for improvement of O2 diffusivity in Li-O2 batteries[J]. RSC Advances, 2014, 4(33): 17141-17145.
[34] Chen Yong, Li Fujun, Tang Daiming, et al. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13076-13081.
[35] Mi Rui, Liu Hao, Wang Hao, et al. Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries[J]. Carbon, 2014, 67: 744-752.
[36] Li Yongliang, Wang Jiajun, Li Xifei, et al. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J]. Electrochemistry Communications, 2011, 13(7): 668-672.
[37] Lim H D, Song H, Gwon H, et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries[J]. Energy & Environmental Science, 2013, 6(12): 3570-3575.
[38] Huang Shu, Wang Wei, Wang Kangli, et al. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-94.(in Chinese)
黄澍, 王玮, 王康丽, 等. 石墨烯在化学储能中的研究进展[J]. 储能科学与技术, 2014, 3(2): 85-94.
[39] Kim H, Lim H D, Kim J, et al. Graphene for advanced Li/S and Li/air batteries[J]. Journal of Materials Chemistry A, 2014, 2(1):33-47.
[40] Li Yongliang, Wang Jiajun, Li Xifei, et al. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery[J]. Chemical Communications (Cambridge), 2011, 47(33): 9438-9440.
[41] Lim H D, Gwon H, Kim H, et al. Mechanism of Co3O4/graphene catalytic activity in Li-O2 batteries using carbonate based electrolytes[J]. Electrochimica Acta, 2013, 90: 63-70.
[42] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
[43] Ottakamthotiyl M M, Freunberger S A, Peng Zhangquan, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11): 1050-1056.
[44] Zhao Guangyu, Mo Runwei, Wang Baoyu, et al. Enhanced cyclability of Li-O2 batteries based on TiO2 supported cathodes with no carbon or binder[J]. Chemistry of Materials. 2014, 26(8): 2551-2556.
[45] Dathar G K P,Shelton W A,Xu Y.Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 891-895.
[46] Cheng Fangyi, Chen Jun. Nanoporous catalysts for rechargeable Li-air batteries[J]. Acta Chimica Sinica, 2013, 71(04): 473-477.(in Chinese)
陈方益,陈军. 可充锂空气电池多孔纳米催化剂[J]. 化学进展,2013,71(04): 473-477.
[47] Gittleson F S, Sekol R C, Doubek G, et al. Catalyst and electrolyte synergy in Li-O2 batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3230-3237.
[48] Guo Guilie, Truong T H A, Tan Huiteng, et al. Platinum and palladium nanotubes based on genetically engineered elastin-mimetic fusion protein-fiber templates: synthesis and application in lithium-O2 batteries[J]. Chemistry an Asian Journa, 2014, 9(9): 2555-2559.
[49] Sun Bing, Munroe P, Wang Guoxiu. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Scientific Reports, 2013, 3: 2247-2253.
[50] Lu Yichun, Xu Zhichuan, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemistry Society, 2010, 132(35): 12170-12171.
[51] Li Fujun, Zhang Tao, Zhou Haoshen. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes[J]. Energy & Environmental Science, 2013, 6(4):1125-1141.
[52] Cao Yong, Wei Zhikai, He Jiao, et al. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance[J]. Energy & Environmental Science, 2012, 5(12): 9765-9768.
[53] Sun Chunwen, Li Fan, Ma Chao, et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries[J]. Journal of Materials Chemistry A, 2014, 2(20): 7188.
[54] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(1): 392-396.
[55] Xu Jijing, Xu Dan, Wang Zhongli, et al. Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 52(14): 3887-3890.
[56] Kalubarme R S, Park G E, Jung K N, et al. LaNixCo1-xO3-perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A880-A889.
[57] Oh S H, Nazar L F. Oxide catalysts for rechargeable high-capacity Li-O2 batteries[J]. Advanced Energy Materials, 2012, 2(7): 903-910.
[58] Nasybulin E, Xu W, Engelhard M H, et al. Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (PEDOT) in Li-O2 battery[J]. Electrochemistry Communications, 2013, 29: 63-66.
[59] Yoon T H, Park Y J. New strategy toward enhanced air electrode for Li-air batteries: apply a polydopamine coating and dissolved catalyst[J]. RSC Advances, 2014, 4(34): 17434-17442.
[60] Kim D S, Park Y J. Effect of multi-catalysts on rechargeable Li-air batteries[J]. Journal of Alloys and Compounds, 2014, 591: 164-169.
[61] Lin Xijing, Lu Xu, Huang Tao, et al. Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries[J]. Journal of Power Sources, 2013, 242: 855-859.
[62] Shui Jianglan, Du Feng, Xue Chenming, et al. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J]. Article, 2014, 8(3): 3015-3022.
[63] Luo Zhongkuan, Liang Chunsheng, Wang Fang, et al. Optimizing main materials for a lithium-air battery of high cycle life[J]. Advanced Functional Materials, 2013, 24(14): 2101-2105.
[64] Bhatt M D, Geaney H, Nolan M, et al. Key scientific challenges in current rechareable non-aqueous Li-O2 batteries: experient and theory[J]. Physical Chemistry Chemical Physics. 2014, 16(24): 12093-12130.