[1]蒋红英,宋亮亮,罗双华,等.散粒体的自组织临界性分析[J].深圳大学学报理工版,2015,32(1):96-101.[doi:10.3724/SP.J.1249.2015.01096]
 Jiang Hongying,Song Liangliang,Luo Shuanghua,et al.Analysis of self-organized criticality in the granular mixtures[J].Journal of Shenzhen University Science and Engineering,2015,32(1):96-101.[doi:10.3724/SP.J.1249.2015.01096]
点击复制

散粒体的自组织临界性分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第1期
页码:
96-101
栏目:
土木建筑工程
出版日期:
2015-01-20

文章信息/Info

Title:
Analysis of self-organized criticality in the granular mixtures
文章编号:
201501014
作者:
蒋红英1宋亮亮2罗双华2慕青松3
1)西京学院土木工程学院,西安 710123
2)西安理工大学基建处,西安 710048
3)兰州大学土木工程与力学学院,兰州 730000
Author(s):
Jiang Hongying1 Song Liangliang2 Luo Shuanghua2 and Mu Qingsong3
1) College of Civil Engineering, Xijing University, Xi’an 710123, P.R.China
2) Construction Bureau, Xi’an University of Technology, Xi’an 710048, P.R.China
3) College of Civil Engineer and Mechanics, Lanzhou University, Lanzhou 730000, P.R.China
关键词:
防灾减灾工程防护工程散粒体各向异性自组织临界性拱效应
Keywords:
disaster prevention and reduction engineering protective engineering granular mixtures anisotropy self-organized criticality arch effect
分类号:
TU 444
DOI:
10.3724/SP.J.1249.2015.01096
文献标志码:
A
摘要:
基于二维模拟实验,研究竖向荷载下散粒体中的自组织临界性,揭示细观拱效应与宏观大崩塌的变化规律,以及拱效应与材料性质的关系.散粒体中每个小自组织的临界发展过程包括自组织搭拱、拱随遇平衡和拱崩塌的动力学演化.散粒体大坍塌是众多小自组织临界发生后的力学性质由量变到质变的过程.用随机理论细观探讨一个预期失败模式的理论模型,为研究散体材料结构自组织临界性系统的可预测性及灾害预测预报提供了科学依据.
Abstract:
Based on a two-dimensional experiment, we investigate the mechanism of self-organized criticality of granular mixtures under a vertical load and reveal the rules of change of the mesoscopic arch effect and macro big collapses as well as the relationship between the arch effect and the material properties. The development of self-organization criticality is a geodynamic process including arching, arch relaxation and arch collapse. Large collapse of granular mixtures is a process where quantitative changes lead to changes in mechanical properties after a multitude of small self-organized criticalities occur. We apply random theory to probe into the theoretical model with an expected failure mode, which is given in a mesoscopic discussion. The research on granular structure can provide a scientific basis for the study of the predictability of self-organized criticality system and disaster forecasting.

参考文献/References:

[1] Tasi J C,Voth G A,Gollub J P.Internal granular dynamics, shear-induced crystallization, and compaction steps[J]. Physical Review Letters,2003,91(6):643011-643014.
[2] Jajcevic D, Siegmann E, Radeke C, et al. Large-scale CFD-DEM simulations of fluidized granular systems [J]. Chemical Engineering Science, 2013, 98(5):298-310.
[3] Shirsath S S, Padding J T, Deen N G, et al. Experimental study of monodisperse granular flow through an inclined rotating chute[J]. Powder Technology,2013,246(5): 235-246.
[4] Zheng B, Elsworth D. Strength evolution in heterogeneous granular aggregates during chemo-mechanical compaction[J]. International Journal of Rock Mechanics & Mining Sciences, 2013,60(1):217-226.
[5] Moysey P A, Nadella V R, Malcolm H I B. Dynamic coefficient of friction and granular drag force in dense particle flows: experiments and DEM simulations[J]. Powder Technology, 2013, 93(1):1-14.
[6] Michlmayr G, Cohen D, Dani O. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media[J]. Earth-Science Reviews, 2012, 112: 97-114.
[7] Samiei K, Peters B. Experimental and numerical investigation into the residence time[J]. Chemical Engineering Science,2013,87(10):234-245.
[8] Ringl C, Urbassek H M. A LAMMPS implementation of granular mechanics: inclusion of adhesive and microscopic friction forces[J]. Computer Physics Communications 2012,183(2): 986-992.
[9] Chen K C, Lan J Y. Micromorphic modeling of granular dynamics[J]. International Journal of Solids and Structures,2009, 46(11): 1554-1563.
[10] Losert W, Geminard J C, Nasuno S, et al. Mechanisms for slow strengthening in granular materials[J]. Physical Review E, 2000,64(2):4065-4068.
[11] Huang J, Silva M V, Krabbenhoft K. Three-dimensional granular contact dynamics with rolling resistance [J].Computers and Geotechnics, 2013,49: 289-298.
[12] Jiang Hongying,Ke Zhihua,Liu Jie. Experimental study of granular materials based on vertical load[J]. Sichuan Building Science,2010,36(3):106-108.(in Chinese)
蒋红英,柯志华,刘杰. 竖向荷载作用下散体材料堆的试验研究[J]. 四川建筑科学研究,2010,36(3):106-108.
[13] Sheng L T, Tai Y C, Kuo C Y,et al. A two-phase model for dry density-varying granular flows[J]. Advanced Powder Technology,2013,24:132-142.
[14] Keith A H. Modeling granular material flows: the angle of repose, fluidization and the cliff collapse problem[J]. Planetary and Space Science,2013,82(83):11-26.
[15] Dalibor J, Siegmann E, Radeke C, et al. Large-scale CFD-DEM simulations of fluidized granular systems[J]. Chemical Engineering Science, 2013,98:298-310.
[16] Liu Jiakun. The application of stochastic process[M]. Beijing: Science Press,2000.(in Chinese).
刘嘉馄.应用随机过程[M].北京:科学出版社,2000.
[17] He Na, Fu Ronghua, Bu Xianghang,et al. An experimental study on movement and accumulation characteristics of the sand-sliding slope[J]. Journal of Geological Hazards and Environment Preservation, 2012,23(1):50-53.(in Chinese)
何娜,傅荣华,卜祥航,等. 散粒体斜坡运动堆积特征试验研究[J]. 地质灾害与环境保护,2012,23(1):50-53.
[18] Jiang Hongying, Lu Jinbu,Mu qingsong. Research on the sedimentation regulation model of the of granular packs[J]. Journal of Kunming University of Science and Technology, 2010(2):78-80.(in Chinese)
蒋红英,鲁进步,慕青松.散体材料结构沉降机理分析与模型建立[J].昆明理工大学学报理工版,2010(2):78-80.
[19] Losert W, Geminard J C, Nasuno S, et al. Mechanisms for slow strengthening in granular materials[J].Physical Review E Volume,2000,61: 4061-4068.
[20] Lin Yuanlie.The application of stochastic process[M].Beijing: Tsinghua University Press,2002.(in Chinese).
林元烈.应用随机过程[M].北京:清华大学出版社,2002.
[21] Zhang Zhuokui, Chen Huichan . Stochastic processes and their applications[M]. Xi’an: Xi’an Electronic and Science University Press, 2012.(in Chinese)
张卓奎,陈慧婵.随机过程及其应用[M].西安:西安电子科技大学出版社,2012.
[22] Huang J, Silva M V, Krabbenhoft K. Three-dimensional granular contact dynamics with rolling resistance [J]. Computers and Geotechnics, 2013,49:49289-49298.
[23] Estrada N, Taboada A .Yield surfaces and plastic potentials of cemented granular materials from discrete element simulations[J]. Computers and Geotechnics,2013,49(11) :62-69.
[24] Guo N, Zhao J.The signature of shear-induced anisotropy in granular media[J].Computers and Geotechnics, 2013,47(8): 1-15.
[25] Nicot F, Hadda N, Guessasma M, et al. On the definition of the stress tensor in granular media [J]. International Journal of Solids and Structures,2013,50(4) :2508-2517.

相似文献/References:

[1]徐沛,李敏辉,张小刚.钢筋混凝土结构保护层非均匀锈胀压力模型[J].深圳大学学报理工版,2016,33(6):639.[doi:10.3724/SP.J.1249.2016.06639]
 Xu Pei,Li Minhui,and Zhang Xiaogang.Non-uniform steel corrosion expansive force model for the cover of reinforced concrete structure[J].Journal of Shenzhen University Science and Engineering,2016,33(1):639.[doi:10.3724/SP.J.1249.2016.06639]
[2]王耀城,王少华,钟镇灏,等.轴向拉压荷载对水泥胶砂传输性能的影响[J].深圳大学学报理工版,2017,34(4):408.[doi:10.3724/SP.J.1249.2017.04408]
 Wang Yaocheng,Wang Shaohua,Zhong Zhenhao,et al.Effect of axial tensile and compressive loads on transport properties of cement mortar[J].Journal of Shenzhen University Science and Engineering,2017,34(1):408.[doi:10.3724/SP.J.1249.2017.04408]

备注/Memo

备注/Memo:
Received:2014-06-17;Accepted:2014-10-11
Foundation:National Natural Science Foundation of China(10402112); Science and Technology Plan Projects of Shaanxi Province (2014K06-19)
Corresponding author:Professor Jiang Hongying.E-mail: hunter.000000@163.com
Citation:Jiang Hongying, Song Liangliang, Luo Shuanghua, et al. Analysis of self-organized criticality in the granular mixtures[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 96-101.(in Chinese)
基金项目:国家自然科学基金资助项目(10402112);陕西省科技计划资助项目(2014K06-19)
作者简介:蒋红英(1959—),女(汉族),浙江省平湖市人,西京学院教授.E-mail: hunter.000000@163.com
引文:蒋红英,宋亮亮,罗双华,等.散粒体的自组织临界性分析[J]. 深圳大学学报理工版,2015,32(1):96-101.
更新日期/Last Update: 2015-01-05