[1]高庆庆,张忠健,皮陈炳,等.不同MgO掺杂比对MgxZn1-xO靶材性能的影响[J].深圳大学学报理工版,2015,32(1):82-88.[doi:10.3724/SP.J.1249.2015.01082]
 Gao Qingqing,Zhang Zhongjian,Pi Chenbing,et al.Effect of MgO doping ratio on the properties of MgxZn1-xO targets[J].Journal of Shenzhen University Science and Engineering,2015,32(1):82-88.[doi:10.3724/SP.J.1249.2015.01082]
点击复制

不同MgO掺杂比对MgxZn1-xO靶材性能的影响()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第1期
页码:
82-88
栏目:
材料科学
出版日期:
2015-01-20

文章信息/Info

Title:
Effect of MgO doping ratio on the properties of MgxZn1-xO targets
文章编号:
201501011
作者:
高庆庆1张忠健2皮陈炳1蔡雪贤1尚福亮1朱德亮1杨海涛1
1)深圳大学材料学院,深圳市特种功能材料重点实验室,深圳陶瓷制备先进技术工程实验室,深圳 518060
2)株洲硬质合金集团有限公司,硬质合金国家重点实验室,湖南株洲412000
Author(s):
Gao Qingqing1 Zhang Zhongjian2 Pi Chenbing1 Cai Xuexian1 Shang Fuliang1 Zhu Deliang1 and Yang Haitao1
1) College of Materials Science and Engineering, Key Laboratory of Functional Materials of Shenzhen, Shenzhen Engineering Laboratory of Advanced Technology for Ceramics, Shenzhen University, Shenzhen 518060, P.R.China
2)Zhuzhou Cemented Carbide Group Co. Ltd, State Key Lab of Cemented Carbide,Zhuzhou 412000, Hunan Province, P.R.China
关键词:
材料加工粉末冶金氧化锌氧锌镁陶瓷靶材烧结掺杂比力学性能
Keywords:
materials processing powder metallurgy ZnO MgxZn1-xO ceramic target sintering doping ratio mechanical property
分类号:
TF 125; TM 283
DOI:
10.3724/SP.J.1249.2015.01082
文献标志码:
A
摘要:
用传统常压固相烧结法,制备掺杂氧化镁的氧化锌陶瓷靶材,研究不同MgO含量及烧结温度对MgxZn1-xO陶瓷靶材的微观结构、力学性能、致密度和导电性能的影响.通过X射线衍射仪(X-ray diffraction,XRD)测定靶材相结构,扫描式电子显微镜(scanning electron microscope,SEM)观察靶材的断面形貌,万能实验机测量靶材的抗弯强度,维氏显微硬度仪测量靶材的维氏硬度,阿基米德排水法测量靶材密度,四探针法测量靶材导电性能,对MgxZn1-xO靶材的性能进行了表征,分析了MgxZn1-xO陶瓷靶材的烧结机理. 结果表明,MgxZn1-xO靶材的最佳烧结温度随着MgO含量的增加有所提高. MgO的掺杂比为x=0.12时,靶材的最佳烧结温度是1 450 ℃;掺杂比为x=0.20时,靶材的最佳烧结温度约为1 500 ℃. 相同烧结温度下,随着MgO掺杂比的增加,靶材的致密性增大;靶材抗弯强度先升后降,掺杂比为x=0.12时达到最大值,为94.56 MPa. 靶材硬度随着Mg含量的增加渐增,在1 450 ℃烧结,掺杂比为0时维氏硬度为152.000 N/mm2,掺杂比为x=0.40时维氏硬度为364.045 N/mm2. 靶材的导电性随着MgO掺杂比的增加呈渐减趋势,掺杂比为0时,方块电阻为819.36 Ω;掺杂比为x=0.40时,方块电阻增至30.00 MΩ.
Abstract:
MgxZn1-xO ceramic targets were prepared by using traditional solid-phase sintering method, and the effects of different MgO doping ratios and sintering temperatures on their microstructure, mechanical properties, density and electrical properties were studied. The MgxZn1-xO targets performance were characterized through specific analyses, including phase structure analysis by X-ray diffraction (XRD), fracture surface observation by scanning electron microscope (SEM), bending strength measurement by universal-testing machine, Vickers hardness measurement by micro Vickers tester, density measurement by Archimedes principle, and conductivity measurement by the four-probe method. Also, a preliminary understanding of the sintering mechanism of MgxZn1-xO targets was better understood on the basis of the characterization. The results show that the best sintering temperature increases with the increase of the MgO content x in MgxZn1-xO. The optimal sintering temperature is 1 450 ℃, at the doping ratio x=0.12, and the optimal sintering temperature is 1 500 ℃, at the doping ratio x=0.20. At the same sintering temperature, the density increases with the increase of MgO content, while the bending strength first increases and then decreases with the maximum bending strength being 94.56 MPa at the doping ratio x=0.12. The hardness always increases with the increase of MgO content: Vickers hardness reaches 152.000 N/mm2 without doping, and the hardness increases to 364.045 N/mm2 at the doping ratio x=0.40. The sheet conductivity gradually decreases with the increase of MgO doping ratio. The sheet resistance is 819.36 Ω when doping ratio is 0 and it increases to 30.00 MΩ when doping ratio x=0.40.

参考文献/References:

[1] Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Applied Physics Letters, 2003, 82(5):733-735.
[2] Gu Fubo,You Dan,Wang Zhihua, et al. Improvement of gas-sensing property by defect engineering in microwave-assisted synthesized 3D ZnO nanostructures[J]. Sensors and Actuators B: Chemical,2014,204:342-350.
[3] Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties[J].Journal of Applied Physics, 2003,93(3):1624-1630.
[4] Al-Salman,Husam S,Abdullah M J, et al.Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application[J]. Measurement,2014,59:248-257.
[5] Tsukazaki A, Ohtomo A, Kita T,et al.Quantum hall effect in polar oxide heterostructures[J]. Science, 2007, 315(5817):1388-1391.
[6] Poongodi G,Mohan K R,Jayavel R,et al.Influence of S doping on structural, optical and visible light photocatalytic activity of ZnO thin films[J].Ceramics International, 2014,40(9B):14733-14740.
[7] Huang Haiqin.Research of ZnO-based TFT[D]. Beijing: Beijing Jiaotong University, 2012.(in Chinese)
黄海琴. ZnO基薄膜晶体管的研制[D]. 北京:北京交通大学,2012.
[8] Oba F, Nishitani S R, Isotani S, et al. Energetics of native defects in ZnO[J]. Journal of Applied Physics, 2001, 90(2):824-828.
[9] Umezawa N, Sato M, Shiraishi K. Reduction in charged defects associated with oxygen vacancies in hafnia by magnesium incorporation:first-principles study[J]. Applied Physics Letters,2008,93(22):223104-1-223104-3.
[10] Zamiri R,Singh B,Bdikin I,et al.Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method[J].Solid State Communications,2014,195:74-79.
[11] Tsukazaki A,Akasaka S,Nakahara K,et al.Observation of the fractional quantum Hall effect in an oxide[J]. Nature Materials,2010,9(11):889-893.
[12] Lim S J, Kwon S J, Kim H,et al.High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO[J]. Applied Physics Letters, 2007, 91(18):183517-1-183517-3.
[13] Lim S J, Kim J M, Kim D, et al.Atomic layer deposition ZnO:N thin film transistor: the effects of N concentration on the device properties[J]. Journal of the Electrochemical Society, 2010,157(2):H214-H218.
[14] Shan F K, Kim B I, Liu G X, et al.Blueshift of near band edge emission in Mg doped ZnO thin films and aging[J]. Journal of Applied Physics,2004, 95(9):4772-4776.
[15] Sharma A K, Narayan J, Muth J F, et al. Optical and structural properties of epitaxial MgxZn1-xO alloys[J]. Applied Physics Letters,1999,75(21):3327-3329.
[16] Chhikara D,Srivatsa K M K , Senthil K. On the synthesis and characterization of ZnO/MgO nanocomposite by thermal evaporation technique[J]. Solid State Sciences, 2014,37:108-113.
[17] Ghosh R, Basak D. The effect of growth ambient on the structural and optical properties of MgxZn1-xO thin films[J]. Applied Surface Science, 2009, 255(16):7238-7242.
[18] Vijayalakshmi K, Renitta A, Karthick, K. Growth of high quality ZnO∶Mg films on ITO coated glass substrates for enhanced H2 sensing[J]. Ceramics International, 2014, 40(4): 6171-6177.
[19] Shin S W, Kim I Y, Jeon K S, et al. Wide band gap characteristic of quaternary and flexible Mg and Ga co-doped ZnO transparent conductive thin films[J]. Journal of Asian Ceramic Societies, 2014,1(3):262-266.
[20] RyzhovaM V,Redkin A N,Yakimov E E.One-step vapor deposition of ZnO nanowires/MgO film composite structures[J].Materials Letters, 2014,136:318-321.
[21] Vashaei Z, Minegishi T, Suzuki H, et al. Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire[J].Journal of Applied Physics, 2005, 98(5): 4911-1-4911-4.
[22] Shi K,Zhang P F,Wei H Y,et al. Energy band alignment of MgO(111)/ZnO(0002) heterojunction determined by X-ray photoelectron spectroscopy[J]. Solid State Communications, 2012,152(11):938-940.
[23] Ku C J, Duan Ziqing, Reyes P I, et al. Effects of Mg on the electrical characteristics and thermal stability of MgxZn1-xO thin film transistors[J].Applied Physics Letters,2011,98(12):123511-1-123511-3.
[24] Liu Xinyu,Li Haiqi,Jiang Minhong.Preparation and properties of ZAO ceramic targets by conventional solid-state reaction method[J]. Journal of Hunan University of Science and Technology, 2008,23(1):27-30.(in Chinese)
刘心宇,李海麒,江民红.常压固相烧结法制备ZAO靶材及其性能的研究[J].湖南科技大学学报,2008,23(1):27-30.
[25] Gao Qingqing, Yang Haitao. Preparation of MgO-doped ZnO(MgxZn1-xO) ceramic targets[J]. Journal of Wuhan University of Technology, 2014,36(6):5-9.(in Chinese)
高庆庆,杨海涛. MgxZn1-xO陶瓷靶材的制备[J]. 武汉理工大学学报,2014,36(6):5-9.

备注/Memo

备注/Memo:
Received:2014-07-07;Accepted:2014-10-14
Foundation:National Natural Science Foundation of China(51371120,51302174);Shenzhen Strategic Emerging Industry Development Funds Projects(ZDSY20120612094418467);Shenzhen Science Technology Research Foundation for Basic Project(JCYJ20140418181958489)
Corresponding author:Professor Yang Haitao. E-mail: yanght63@szu.edu.cn
Citation:Gao Qingqing, Zhang Zhongjian, Pi Chenbing, et al. Effect of MgO doping ratio on the properties of MgxZn1-xO targets[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 82-88.(in Chinese)
基金项目:国家自然科学基金资助项目(51371120,51302174);深圳市战略性新兴产业发展专项资金资助项目(ZDSY20120612094418467);深圳市科技研发资金基础研究计划资助项目(JCYJ20140418181958489)
作者简介:高庆庆(1988—),男(汉族),江西省九江市人,深圳大学硕士研究生.E-mail:gauc10@sina.cn
引文:高庆庆, 张忠健, 皮陈炳, 等. 不同MgO掺杂比对MgxZn1-xO靶材性能的影响[J]. 深圳大学学报理工版,2015,32(1):82-88.
更新日期/Last Update: 2015-01-05