[1]莫蓓莘,符晓婕,莫小为,等.细胞质处理小体(P-小体)与基因表达的调控[J].深圳大学学报理工版,2015,32(1):48-57.[doi:10.3724/SP.J.1249.2015.01048]
 Mo Beixin,Fu Xiaojie,Mo Xiaowei,et al.Cytoplasmic processing bodies (P-bodies) and the regulation of gene expression[J].Journal of Shenzhen University Science and Engineering,2015,32(1):48-57.[doi:10.3724/SP.J.1249.2015.01048]
点击复制

细胞质处理小体(P-小体)与基因表达的调控()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第1期
页码:
48-57
栏目:
生物工程
出版日期:
2015-01-20

文章信息/Info

Title:
Cytoplasmic processing bodies (P-bodies) and the regulation of gene expression
文章编号:
201501007
作者:
莫蓓莘1符晓婕1莫小为1刘丽12徐晓峰3岳路明3
1)深圳大学生命科学学院,深圳市微生物基因工程重点实验室,深圳 518060
2)加州大学河滨分校植物学与植物科学研究院,综合基因组生物学研究所,美国河滨 92521
3)深圳大学生命科学学院,深圳市海洋生物技术与生态环境重点实验室,深圳 518060
Author(s):
Mo Beixin1 Fu Xiaojie1 Mo Xiaowei1 Liu Li12 Xu Xiaofeng3 and Yue Luming3
1) College of Life Science, Shenzhen University, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen 518060, P.R.China
2) Department of Botany and Plant Sciences, University of California, Riverside, Institute of Integrative Genome Biology, Riverside, CA 92521, USA
3) College of Life Science, Shenzhen University, Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, Shenzhen 518060, P.R.China
关键词:
细胞生物学P-小体基因表达调控mRNA降解翻译抑制小RNA分子
Keywords:
cell biology P-bodies regulation of gene expression mRNA degradation translation inhibition microRNA(miRNA)
分类号:
Q 75
DOI:
10.3724/SP.J.1249.2015.01048
文献标志码:
A
摘要:
mRNA处理小体,又称P-小体(processing bodies,P-bodies),是细胞质中含有多种功能蛋白和RNA的聚集体. 评述P-小体的形成和运动特点,以及其与小RNA、外切体相互作用,参与基因表达的调控. 介绍了本实验室在P-小体植物细胞中的最新研究进展. 指出P-小体是mRNA降解和储存的场所,在转录后水平参与基因表达的调控,P-小体在细胞中是动态变化的,P-小体中多样化的功能蛋白在P-小体的组装、功能行使中发挥重要作用.P-小体作为细胞质内mRNA的储存和降解结构在基因表达的转录后调控中起重要作用,其调控机制尚待进一步研究补充,P-小体与小RNA分子(microRNA,miRNA)调控的基因沉默之间也存在关联性.
Abstract:
mRNA processing bodies (P-bodies) are cytosolic aggregates containing a variety of functional proteins and RNAs. We briefly review the features of P-bodies formation and movement, the interaction of P-bodies with small RNAs and exosomes in the regulation of gene expression. We also summarize the latest P-bodies related research progress in our lab. P-bodies where mRNA degradation and storage take place play an important role in the posttranscriptional regulation of gene expression. They undergo dynamic changes inside the cell. A variety of functional proteins located in P-bodies are involved in the cytoplasmic assembly and biological functioning of P-bodies. The regulatory mechanism of P-bodies still needs to be investigated futher. P-bodies also participate in microRNA(miRNA)-mediated gene silencing.

参考文献/References:

[1] Eystathioy T, Chan E K L, Tenenbaum S A, et al. A phosphorylated cytoplasmic autoantigen,GW182,associates with a unique population of human mRNAs within novel cytoplasmic speckles[J]. Molecular Cell, 2002, 13(4):1338-1351.
[2] Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies[J]. Science, 2003, 300(5620):805-808.
[3] Mo Beixin. RNA localization in plant cells and advances in the research[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(3):229-236.(in Chinese)
莫蓓莘. RNA在植物细胞中的定位及其研究进展[J]. 深圳大学学报理工版,2011, 28(3):229-236.
[4] Liu J, Valencia-Sanchez, Parker R, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies[J]. Nature Cell Biology, 2005, 7(7):719-723.
[5] Jain S, Parker R. Ten years of progress in GW/P body research[J]. Advances in Experimental Medicine and Biology, 2013, 768:23-43.
[6] Nissan T, Rajyaguru P, She M, et al. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms[J]. Molecular Cell, 2010, 39(5):773-783.
[7] Pilkington G R,Parker R.Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping[J]. Molecular and Cellular Biology, 2008, 28(4):1298-1312.
[8] Oishi K, Kurahashi H, Pack C G, et al. A bipolar functionality of Q/N-rich proteins:Lsm4 amyloid causes clearance of yeast prions[J]. Microbiology Open, 2013, 2(3):415-430.
[9] Fromm S A, Truffault V, Kamenz J, et al. The structural basis of Edc3 and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex[J]. The EMBO Journal, 2012, 31(2):279-290.
[10] Teixeira D, Parker R. Analysis of P-body assembly in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2007, 18(6):2274-2287.
[11] Decker C J, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae[J]. Journal of Cell Biology, 2007, 179(3):437-449.
[12] Reijns M A, Alexander R D, Spiller M P, et al. A role for Q/N-rich aggregation-prone regions in P-body localization[J]. Journal of Cell Science, 2008, 121(15): 2463-2472.
[13] Peremyslov V V, Mockler T C, Filichkin S A, et al. Expression, splicing, and evolution of the myosin gene family in plants[J]. Plant Physiology, 2011, 155(3):1191-1204.
[14] Avisar D, Prokhnevsky A I, Dolja V V. Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog[J]. Journal of Virology, 2008, 82(6):2836-2843.
[15] Tominaga M, Kojima H, Yokota E, et al. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity[J]. The EMBO Journal, 2003, 22(6):1263-1272.
[16] Kinkema M, Schiefelbein J A. Myosin from a higher plant has structural similarities to class V myosins[J]. Journal of Molecular Biology, 1994, 239(4):591-597.
[17] Pashkova N, Jin Y, Ramaswamy S, et al. Structural basis for myosin V discrimination between distinct cargoes[J]. The EMBO Journal, 2006, 25(4):693-700.
[18] Sparkes I A. Motoring around the plant cell:insights from plant myosins[J]. Biochemical Society Transactions, 2010, 38(3):833-838.
[19] Sparkes I. Recent advances in understanding plant myosin function: life in the fast lane[J]. Molecular Plant, 2011, 4(5):805-812.
[20] Peremyslov V V, Prokhnevsky A I, Dolja V V, et al. Myosins are required for development, cell expansion, and F-actin organization in Arabidopsis[J]. The Plant Cell, 2010, 22(6): 1883-1897.
[21] Peremyslov V V, Morgun E A, Kurth E G, et al. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles[J]. BMC Plant Cell, 2013, 25(8):3022-3038.
[22] Natesan S K, Su llivan J A, Gray J. Myosin XI is required for actin-associated movement of plastid stromules[J]. Molecular Plant, 2009, 2(6):1262-1272.
[23] Sattarzadeh A, Krahmer J, Germain A D, et al. A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana[J]. Molecular Plant, 2009, 2(6):1351-1358.
[24] Ueda H, Yokota E, Kutsuna N, et al. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15):6894-6899.
[25] Steffens A, Jaegle A, Trech A, et al. Processing body movement in Arabidopsis thaliana depends on an interaction between myosins and DCP1[J]. Plant Physiology, 2014, 164(4):1879-1892.
[26] Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover[J]. Nature Structural & Molecular Biology, 2004, 11(2):121-127.
[27] Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7):529-539.
[28] Schaeffer D, Clark A, Klauer A A, et al. Functions of the cytoplasmic exosome[J]. Advances in Exprimental Medicine and Biology, 2011, 702:79-90.
[29] Anderson J S, Parker R P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex[J]. The EMBO Journal, 1998, 17(5):1497-1506.
[30] Steiger M, Carr2Schmid A, Schwartz D C. Analysis of recombinant yeast decapping enzyme[J]. RNA-A Publication of The RNA Society, 2003, 9(2):231-238.
[31] Tharun S, He W, Mayes A E, et al. Yeast Sm-like proteins function in mRNA decapping and decay[J]. Nature, 2000, 404(6777):515-518
[32] Tharun S, Parker R. Targeting an mRNA for decapping:displacement of translation factors and association of the Lsm1p27p complex on deadenylated yeast mRNAs[J]. Molecular Cell, 2001, 8(5):1075-1083.
[33] Coller J, Parker R. General translational repression by activators of mRNA decapping[J]. Cell, 2005, 122(6):875-886.
[34] Malecki M, Viegas S C, Carneiro T, et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway[J]. The EMBO Journal, 2013, 32(13):1842-1854.
[35] Bakheet T, Williams B R, Khabar K S. An update of AU-rich element mRNA database[J]. Nucleic Acids Research, 2003, 31(1):421-423.
[36] Shaw G, Kamen R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation[J]. Cell, 1986, 46(5):659-667.
[37] Carballo E, Lai W S, Blackshear P J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin[J]. Science, 1998, 281(5379):1001-1005.
[38] Lai W S, Carballo E, Thorn J M, et al. Interactions of CCCH zinc finger proteins with mRNA: binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA[J]. Journal of Biological Chemistry, 2000, 275(23):17827-17837.
[39] Stoecklin G, Colombi M, Raineri I, et al. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover[J]. The EMBO Journal, 2002, 21(17):4709-4718.
[40] Chen C Y, Gherzi R, Ong S E, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs[J]. Cell, 2001, 107(4):451-464.
[41] Lykke A J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1[J]. Genes & Development, 2005, 19(3):351-361.
[42] Stoecklin G, Mayo T, Anderson P. ARE-mRNA degradation requires the 5′-3′decay pathway[J]. The EMBO Journal, 2006, 7(1):72-77.
[43] Kedersha N,Stoecklin G,Ayodele M,et al.Stress granules and processing bodies are dynamically linked sites of mRNP remodeling[J]. Journal of Cell Biology, 2005, 169(6):871-884.
[44] Stoecklin G, Anderson P. In a tight spot: ARE-mRNAs at processing bodies[J]. Genes, 2007, 21:627-631.
[45] Bhattacharyya S N, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress[J]. Cell, 2006, 125(6):1111-1124.
[46] Kedersha N L, Gupta M, Li W, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules[J]. Journal of Cell Biology, 1999, 147(7):1431-1441.
[47] Fujimura K, Kano F, Murata M. Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies[J]. RNA-A Publication of the RNA Society, 2008, 14(3):425-431.
[48] Teixeira D, Sheth U, Valencia-Sanchez M A, et al. Processing bodies require RNA for assembly and contain nontranslating mRNAs[J]. RNA-A Publication of the RNA Society, 2005, 11(4):371-382.
[49] Cara T P, Sylvia S, Teresa M A, et al. Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules[J]. Virology, 2013, 435(2):472-484.
[50] Valencia-Sanchez M A, Liu J D, Hannon G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs[J]. Genes & Development, 2006, 20(5):515-524.
[51] Jakymiw A, Lian S, Eystathioy, et al. Disruption of GW bodies impairs mamalian RNA interference[J]. Nature Cell Biology, 2005, 7(12):1167-117.
[52] Rehwinkel J, Behm-Ansmant I, Gatfield D, et al. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing[J]. RNA-A Publication Of The RNA Society, 2005, 11(11):1640-1647.
[53] Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by Let-7 microRNA in human cells[J]. Science, 2005, 309(5740):1573-1576.
[54] Chu C Y, Rana T M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54[J]. PLOS Biology, 2006, 4(7):1122-1136.
[55] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190.
[56] Pauley K M, Eystathioy T, Jakymiw A, et al. Formation of GW bodies is a consequence of microRNA genesis[J]. The EMBO Journal, 2006, 7(9):904-910.
[57] Eulalio A, Behm-Ansmant I, Schweizer D, et al. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing[J]. Molecular and Cell Biology, 2007, 27(11):3970-3981.
[58] Beckham C J, Parker R. P bodies, stress granules and viral life cycles[J]. Cell Host & Microbe, 2008, 3(4):206-212.
[59] Mandal M N, Vasireddy V, Reddy G B, et al. CTRP5 is a membrane-associated and secretory protein in the RPE and ciliary body and the S163R mutation of CTRP5 impairs its secretion[J]. Investigative Ophthalmology & Visual Science, 2006, 47(12):5505-5513.
[60] Kulkarni M, OzgurS, Stoecklin G. On track with P-bodies[J]. Biochemical Society Transactions, 2010, 38:242-251.
[61] Kedersha N, Anderson P. Mammalian stress granules and processing bodies[J]. Methods in Enzymology, 2007, 431: 61-81.
[62] Nilsson D, Sunnerhagen P. Cellular stress induces cytoplasmic RNA granules in fission yeast[J]. RNA-A Publication of the RNA Society, 2011, 17(1):120-133.
[63] Yang L, Wu G. Poethig R S. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 315-320.
[64] Nakaminami K, Matsui A, Shinozaki K, et al. RNA regulation in plant abiotic stress responses[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2012, 1819(2):149-153.
[65] Koukalová B, Kovarík A, Fajkus J, et al. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress[J]. FEBS Letters, 1997, 414(2):289-292.
[66] Mo Beixin, Ye Hao, Ou Zhonghua, et al. Stress-induced processing body formation in tobacco suspension cells[J]. Journal of Shenzhen University Science and Engineering, 2012, 29(1):80-84.(in Chinese)
莫蓓莘,叶浩,欧忠华,等.逆境诱导烟草悬浮细胞内处理小体的形成[J]. 深圳大学学报理工版, 2012, 29(1):80-84.
[67] Ye Hao. Function study of mRNA-store/decay processing bodies in plant response to stresses[D].Shenzhen:Shenzhen University, 2013.(in Chinese)
叶浩.储存/降解mRNA的处理小体在植物胁迫应答中的功能研究[D]. 深圳:深圳大学, 2013.
[68] Lacsina J R, LaMonte G, Nicchitta C V, et al. Polysome profiling of the malaria parasite Plasmodium falciparum[J]. Molecular and Biochemical Parasitology, 2011, 179(1):42-46.

相似文献/References:

[1]苏湘鄂,郑小娜.柠檬酸镧对肝癌细胞HepG2抗失巢凋亡的影响[J].深圳大学学报理工版,2010,27(2):236.
 SU Xiang-e and ZHENG Xiao-na.Effect of lanthanum citrate on anoikis resistance in human hepatoma cells HepG2[J].Journal of Shenzhen University Science and Engineering,2010,27(1):236.

备注/Memo

备注/Memo:
Received:2014-09-03;Accepted:2014-11-09
Foundation:National Natural Science Foundation of China(31210103901)
Corresponding author:Associate professor Xu Xiaofeng. E-mail: xxf@szu.edu.cn
Citation:Mo Beixin,Fu Xiaojie,Mo Xiaowei,et al. Cytoplasmic processing bodies(P- bodies)and the regulation of gene expression[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 48-57.(in Chinese)
基金项目:国家自然科学基金资助项目(31210103901)
作者简介:莫蓓莘(1966—),女(汉族),江西省修水县人,深圳大学教授.E-mail:bmo@szu.edu.cn
引文:莫蓓莘,符晓婕,莫小为,等.细胞质处理小体(P-小体)与基因表达的调控[J]. 深圳大学学报理工版,2015,32(1):48-57.
更新日期/Last Update: 2015-01-05