[1]张云波,王丽敏,王利.两全同粒子在一维光晶格中的量子行走[J].深圳大学学报理工版,2015,32(1):1-7.[doi:10.3724/SP.J.1249.2015.01001]
 Zhang Yunbo,Wang Limin,and Wang Li.Quantum walks of two identical particles in one-dimensional lattices[J].Journal of Shenzhen University Science and Engineering,2015,32(1):1-7.[doi:10.3724/SP.J.1249.2015.01001]
点击复制

两全同粒子在一维光晶格中的量子行走()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第32卷
期数:
2015年第1期
页码:
1-7
栏目:
物理
出版日期:
2015-01-20

文章信息/Info

Title:
Quantum walks of two identical particles in one-dimensional lattices
文章编号:
201501001
作者:
张云波王丽敏王利
山西大学理论物理研究所,太原 030006
Author(s):
Zhang Yunbo Wang Limin and Wang Li
Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, P.R.China
关键词:
凝聚态物理光晶格模型量子行走量子统计动力学演化两粒子关联关联涨落
Keywords:
condensed matter physics lattice model quantum walk quantum statistics dynamic evolution two particle correlation correlation fluctuation
分类号:
O 469
DOI:
10.3724/SP.J.1249.2015.01001
文献标志码:
A
摘要:
基于满足周期性边界条件的一维光晶格模型,分别研究遵从玻色-爱因斯坦统计的玻色系统、遵从费米-狄拉克统计的费米系统以及硬核玻色系统下的两粒子关联、关联涨落、平均粒子数分布以及动力学演化等问题,计算量子统计性质和相互作用强度(排斥)对两粒子量子行走(独立行走和绑定行走)的影响.结果表明,在坐标空间中,随着时间的增大,粒子向晶格边缘移动,尤其当相互作用为零时,玻色系统的两粒子关联虽呈现聚束现象,却展示出一种与众不同的对称——输入输出对称,而费米(硬核玻色)系统的两粒子关联呈现类似环类的空间分布. 随着排斥相互作用的增大,3系统都会出现两粒子绑定行走行为,在强相互作用下,研究的物理量(粒子关联、关联涨落和平均粒子数分布)在3系统中几乎相同;在动量空间中,玻色系统呈典型的聚束现象,费米系统呈反聚束现象,硬核玻色系统呈聚束现象. 计算结果为实验上研究不同系统(玻色、费米和硬核玻色)的物理性质提供了依据,并佐证了实验上排斥相互作用下束缚态产生的实验结果.
Abstract:
Based on one-dimensional lattices with periodic boundary conditions, we investigate the two-particle correlations, the correlation fluctuations, and the density distributions as well as the dynamic evolutions of the bosonic system governed by Bose-Einstein statistics, the fermionic system governed by Fermi-Dirac statistics, and the hard-core bosonic system, respectively. The dependences of independent walking and co-walking for two interacting particles on both quantum statistics and interaction strength are calculated. The results show that the particles move to the edge of the lattice with the increase of time in position space. Specifically, for zero interaction, bosonic correlations exhibit bunching but with a specific “in-out” correlation symmetry, while the fermionic correlations(hard-core bosonic correlations)are transformed into a ring-like pattern. However, two particles in the bosonic system and fermionic system (hard-core bosonic system) start to occupy adjacent lattice sites separated by one site and stick together when they are co-walking with increasing interaction. The correlations in the three systems are nearly the same under strong interactions and are the same with correlation fluctuations and density distributions. In momentum space, the quantum statistical natures for two bosonic (hard-core bosonic) walkers and two fermionic walkers result in the emergence of bunching and anti-bunching in two-particle quantum walks (QWs), respectively. In short, the results pave the way for exploring quantum statistics and can be used as evidences for the repulsively bound state observed experimentally.

参考文献/References:

[1] Aharonov Y, Davidovich L, Zagury N.Quantum random walks[J].Physical Review A, 1993, 48(2):1687-1690.
[2] Mohseni M, Rebentrost P, Lloyd S, et al. Environment-assisted quantum walks in photosynthetic energy transfer[J].The Journal of Chemical Physics, 2008, 129(17):174106-1-174106-9.
[3] Du Jiangfeng, Li Hui, Xu Xiaodong, et al.Experimental implementation of the quantum random-walk algorithm[J].Physical Review A, 2003, 67(4):042316-1-042316-5.
[4] Schmitz H, Matjeschk R, Schneider Ch, et al.Quantum walk of a trapped ion in phase space[J].Physical Review Letters, 2009, 103(9):090504-1-090504-4.
[5] Schreiber A, Cassemiro K N, Potoek V, et al.Photons walking the line:a quantum walk with adjustable coin operations[J].Physical Review Letters, 2010, 104(5):050502-1-050502-4.
[6] Zhringer F,Kirchmair G,Gerritsma R,et al.Reali-zation of a quantum walk with one and two trapped ions[J].Physical Review Letters, 2010, 104(10):100503-1-100503-4.
[7] Broome M A, Fedrizzi A, Lanyon B P, et al.Discrete single-photon quantum walks with tunable decoherence[J].Physical Review Letters, 2010, 104(15):153602-1-153602-4.
[8] Schreiber A,Cassemiro K N,Potoek V,et al.Decoherence and disorder in quantum walks: from ballistic spread to localization[J].Physical Review Letters, 2011, 106(18):180403-1-180403-4.
[9] Omar Y, Paunkovi N, Sheridan L, et al.Quantum walk on a line with two entangled particles[J].Physical Review A, 2006, 74(4):042304-1-042304-7.
[10] Pathak P K, Agarwal G S.Quantum random walk of two photons in separable and entangled states[J].Physical Review A, 2007, 75(3):032351-1-032351-13.
[11] Bromberg Y, Lahini Y, Morandotti R, et al.Quantum and classical correlations in waveguide lattices[J].Physical Review Letters, 2009, 102(25):253904-1-253904-4.
[12] Lahini Y, Verbin M, Huber S D, et al.Quantum walk of two interacting bosons[J].Physical Review A, 2012, 86(1):011603-1-011603-5.
[13] Sansoni L, Sciarrino F, Vallone G, et al.Two-particle bosonic-fermionic quantum walk via integrated photonics[J].Physical Review Letters, 2012, 108(1):010502-1-010502-5.
[14] Solntsev A S, Sukhorukov A A, Neshev D N, et al.Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides[J].Physical Review Letters, 2012, 108(2):023601-1-023601-5.
[15] Meinecke J D A, Poulios K, Politi A, et al.Coherent time evolution and boundary conditions of two-photon quantum walks in waveguide arrays[J].Physical Review A, 2013, 88(1):012308-1-012308-6.
[16] Qin Xizhou, Ke Yongguan, Guan Xiwen, et al.Statistics-dependent quantum co-walking of two particles in one-dimensional lattices with nearest-neighbor interactions[J].Physical Review A, 2014, 90(6):062301-1-062301-8.
[17] Winkler K, Thalhammer G, Lang F, et al.Repulsively bound atom pairs in an optical lattice[J].Nature, 2006, 441:853-856.
[18] Wang Li,Hao Yajiang,Chen Shu.Quantum dynamics of repulsively bound atom pairs in the Bose-Hubbard model [J].The European Physical Journal D,2008,48(2):229-234.
[19] Wang Limin, Wang Li, Zhang Yunbo. Quantum walks of two interacting anyons in 1D optical Lattices[J]. Physical Review A, 2014, 90(6):063618-1-063618-6.

相似文献/References:

[1]范平,郑壮豪,梁广兴,等.离子束溅射制备Bi2Te3热电薄膜[J].深圳大学学报理工版,2011,28(No.1(001-095)):84.
 FAN Ping,ZHENG Zhuang-hao,LIANG Guang-xing,et al.Preparation of Bi2Te3 thermoelectric thin films by ion beam sputtering[J].Journal of Shenzhen University Science and Engineering,2011,28(1):84.
[2]王斌,李健伟,卫亚东,等.石墨烯带正常-超导结的量子输运[J].深圳大学学报理工版,2014,31(2):111.[doi:10.3724/SP.J.1249.2014.02111]
 Wang Bin,Li Jianwei,Wei Yadong,et al.Quantum transport through normal-superconducting graphene nanoribbons[J].Journal of Shenzhen University Science and Engineering,2014,31(1):111.[doi:10.3724/SP.J.1249.2014.02111]
[3]赵华,李华艳,周晓凡.自旋轨道耦合对超冷排斥费米气体相变的影响[J].深圳大学学报理工版,2014,31(6):570.[doi:10.3724/SP.J.1249.2014.06570]
 Zhao Hua,Li Huayan,and Zhou Xiaofan.Effects of the spin-orbit coupling on the phase transition of ultra cold repulsive Fermi gases[J].Journal of Shenzhen University Science and Engineering,2014,31(1):570.[doi:10.3724/SP.J.1249.2014.06570]
[4]乔振华,任亚飞.石墨烯中量子反常霍尔效应研究进展[J].深圳大学学报理工版,2014,31(6):551.[doi:10.3724/SP.J.1249.2014.06551]
 Qiao Zhenhua and Ren Yafei.Recent progress on quantum anomalous Hall effect in graphene[J].Journal of Shenzhen University Science and Engineering,2014,31(1):551.[doi:10.3724/SP.J.1249.2014.06551]
[5]罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J].深圳大学学报理工版,2015,32(1):17.[doi:10.3724/SP.J.1249.2015.01017]
 Luo Jingting,Zhong Xin,Zhu Maodong,et al.Growth of ZnO thin film and its surface acoustic wave properties[J].Journal of Shenzhen University Science and Engineering,2015,32(1):17.[doi:10.3724/SP.J.1249.2015.01017]
[6]牛青,李岩,李卫东.马赫-曾德尔干涉仪中位相测量系统的误差分析[J].深圳大学学报理工版,2015,32(3):306.[doi:10.3724/SP.J.1249.2015.0327]
 Niu Qing,Li Yan,and Li Weidong.Systematic error analysis for phase measurement with the Mach-Zehnder interferometer[J].Journal of Shenzhen University Science and Engineering,2015,32(1):306.[doi:10.3724/SP.J.1249.2015.0327]
[7]张龙,万浪辉,许富明,等.黑磷纳米带电子结构的调控[J].深圳大学学报理工版,2015,32(4):343.[doi:10.3724/SP.J.1249.2015.04343]
 Zhang Long,Wan Langhui,Xu Fuming,et al.Modulation of electronic structure of phosphorene nanoribbon[J].Journal of Shenzhen University Science and Engineering,2015,32(1):343.[doi:10.3724/SP.J.1249.2015.04343]
[8]郭飞翔,周晓凡,赵华.梯状光晶格中自旋轨道耦合的排斥费米气体[J].深圳大学学报理工版,2015,32(5):449.[doi:10.3724/SP.J.1249.2015.05449]
 Guo Feixiang,Zhou Xiaofan,and Zhao Hua.Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice[J].Journal of Shenzhen University Science and Engineering,2015,32(1):449.[doi:10.3724/SP.J.1249.2015.05449]
[9]张东平,朱茂东,杨凯,等.氧分压对磁控溅射VO2薄膜相变性能的影响[J].深圳大学学报理工版,2015,32(6):645.[doi:10.3724/SP.J.1249.2015.06645]
 Zhang Dongping,Zhu Maodong,Yang Kai,et al.Influence of oxygen partial pressure on phase transition characteristics of VO2 thin films prepared by magnetron sputtering[J].Journal of Shenzhen University Science and Engineering,2015,32(1):645.[doi:10.3724/SP.J.1249.2015.06645]
[10]洪盛熙,邓文基,刘军丰.类石墨烯材料中应力调制的量子泵浦效应[J].深圳大学学报理工版,2016,33(4):352.[doi:10.3724/SP.J.1249.2016.04352]
 Hong Shengxi,Deng Wenji,et al.Quantum pumping in strain modulated graphene-like materials[J].Journal of Shenzhen University Science and Engineering,2016,33(1):352.[doi:10.3724/SP.J.1249.2016.04352]

备注/Memo

备注/Memo:
Received:2014-10-29;Accepted:2014-12-13
Foundation:National Natural Science Foundation of China (11474189)
Corresponding author:Professor Zhang Yunbo.E-mail:ybzhang@sxu.edu.cn
Citation:Zhang Yunbo,Wang Limin,Wang Li.Quantum walks of two identical particles in one-dimensional lattices[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 1-7.(in Chinese)
基金项目:国家自然科学基金资助项目(11474189)
作者简介:张云波(1969—),男(汉族),山西省黎城县人,山西大学教授.E-mail:ybzhang@sxu.edu.cn
引文:张云波,王丽敏,王利. 两全同粒子在一维光晶格中的量子行走[J]. 深圳大学学报理工版,2015,32(1):1-7.
更新日期/Last Update: 2015-01-05