[1]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626-629.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(6):626-629.[doi:10.3724/SP.J.1249.2014.06626]
点击复制

滑模控制的时滞分数阶金融系统混沌同步()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第6期
页码:
626-629
栏目:
电子与信息科学
出版日期:
2014-11-20

文章信息/Info

Title:
Chaos synchronization of fractional order financial systems with time-delay based on sliding control
文章编号:
20140611
作者:
朱涛张广军姚宏李睿
空军工程大学理学院, 西安 710051
Author(s):
Zhu Tao Zhang Guangjun Yao Hong and Li Rui
College of Science, Air Force Engineering University, Xi’an 710051, P.R.China
关键词:
混沌时滞分数阶非同等阶次单一控制器外部扰动滑模控制
Keywords:
chaotic system delayed fractional order incommensurate order single controller external disturbance sliding control
分类号:
TP 273
DOI:
10.3724/SP.J.1249.2014.06626
文献标志码:
A
摘要:
以非同等阶次的时滞分数阶金融系统为研究对象,研究以单一滑模控制器控制时滞分数阶金融系统实现混沌同步.通过计算Lyapunov指数的方式,分析时滞分数阶金融系统在指定参数条件下的动力学行为,提出单一控制器控制方法,并通过理论证明和仿真实验验证该方法可行,分析系统在出现外部扰动时控制方法的抗干扰能力.结果表明,所提出的单一积分滑模控制方法能够控制时滞分数阶动力系统实现混沌同步,鲁棒性佳.
Abstract:
Chaotic self-synchronization of financial system controlled by a single sliding mode controller is investigated for non-identical order financial system with time-delay. The dynamic behavior of fractional order financial systems with time delay is analyzed under given parameters by calculating the Lyapunov exponent.On this basis is proposed a single sliding mode scheme, whose validity is verified through strict theoretical proof and numerical simulation. The robustness of the control scheme is investigated in the presence of external noise.Results show that the control scheme is robust, and the chaotic synchronization of fractional-order nonlinear dynamical system with time delay can be realized by means of a single integral sliding mode control.

参考文献/References:

[1] Wu Xiangjun,Lu Hongtao,Shen Shilei.Synchronization of a new fractional-order hyperchaotic system[J].Physics Letters A,2009,373(27/28):2329-2337.
[2] Pecora L M,Carroll T L.Synchronization of chaotic systems[J].Physical Review Letters,1990,64(8): 821-824.
[3] Li Demin,Wang Zidong,Zhou Jie,et al.A note on chaotic synchronization of time-delay secure communication systems[J].Chaos,Solitons & Fractals,2008,38(4):1217-1224.
[4] Tian Chuanjun,Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shen-zhen University Science and Engineering,2013,30(5): 469-474.(in Chinese)
田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(5): 469-474.
[5] Dong Jun,Zhang Guangjun,Yao Hong,et al.The Control of complete synchronization and anti-phase synchronization for hyper-chaotic systems of different systems[J].Journal of Air Force Engineering University Natural Science Edition,2012,13(5): 90-94.(in Chinese)
董俊,张广军,姚宏,等.异结构超混沌系统的完全同步与反向同步控制[J].空军工程大学学报自然科学版,2012,13(5): 90-94.
[6] Zhu Tao,Zhang Guangjun,Li Rui,et al.Parameters identification and synchronization of the fractional-order chaotic system with uncertain parameters[J].Journal of Air Force Engineering University Natural Science Edition,2014,15(4): 88-91.(in Chinese)
朱涛,张广军,李睿,等.参数不确定的分数阶混沌系统的完全同步和参数辨识[J].空军工程大学学报自然科学版,2014,15(4): 88-91.
[7] Du Hongyue,Shi Peng,Lu Ning.Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control[J].Nonlinear Analysis:Real World Applications,2013,14(2):1182-1190.
[8] Li Jiangcheng,Mei Dongcheng.The risks and returns of stock investment in a financial market[J].Physics Letters A,2013,377(9):663-670.
[9] Wang Zhen,Huang Xia,Shi Guodong.Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay[J].Computers & Mathematics with Applications,2011,62(3):1531-1539.
[10] Bhalekar S,Daftardar-Gejji V.Fractional ordered Liu system with time-delay [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(8): 2178-2191.
[11] Yin Chun,Zhong Shouming,Chen Wufan.Designofslidingmodecontrollerfora classoffractional-orderchaotic systems[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):356-366.
[12] Deng Weihua,Li Changpin,Lu Jinhu.Stability analysis of linear fractional differential system with multiple time delays[J].Nonlinear Dynamics,2007,48(4):409-416.
[13] Briggs K.An improved method for estimating Lyapunov exponents of chaotic time series[J].Physics Letters A,1990,151(1/2):27-32.
[14] Yu Simin.Chaotic systems and chaotic circuits:principle,design and its application in communications[M].Xi’an:Xidian University Publishing House,2011:163-174.(in Chinese)
禹思敏.混沌系统与混沌电路:原理、设计及在保密通信中的应用[M].西安:西安电子科技大学出版社,2011:163-174.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(6):327.
[2]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(6):469.[doi:10.3724/SP.J.1249.2013.05469]
[3]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(6):475.[doi:10.3724/SP.J.1249.2013.05475]
[4]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(6):43.
[5]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(6):51.[doi:10.3724/SP.J.1249.2020.01051]

备注/Memo

备注/Memo:
Received:2014-05-21;Accepted:2014-09-10
Foundation:National Natural Science Foundation of China (10872156);Aeronautical Science Foundation(20111396011)
Corresponding author:Professor Zhang Guangjun.E-mail:zhanggj3@126.cn
Citation:Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(6): 626-629.(in Chinese)
基金项目:国家自然科学基金资助项目(10872156);航空科学基金资助项目(20111396011)
作者简介:朱涛(1987—),男(汉族),安徽省马鞍山市人,空军工程大学硕士研究生.E-mail: 422548885@qq.com
引文:朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J]. 深圳大学学报理工版,2014,31(6):626-629.
更新日期/Last Update: 2014-10-29