[1]胡学娟,阮双琛,郭春雨,等.基于改进梯度方向直方图的人民币识别[J].深圳大学学报理工版,2014,31(5):487-492.[doi:10.3724/SP.J.1249.2014.05487]
 Hu Xuejuan,Ruan Shuangchen,Guo Chunyu,et al.Improved histograms of oriented gradients for Chinese RMB currency recognition[J].Journal of Shenzhen University Science and Engineering,2014,31(5):487-492.[doi:10.3724/SP.J.1249.2014.05487]
点击复制

基于改进梯度方向直方图的人民币识别()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第5期
页码:
487-492
栏目:
光电工程
出版日期:
2014-09-20

文章信息/Info

Title:
Improved histograms of oriented gradients for Chinese RMB currency recognition
文章编号:
201405007
作者:
胡学娟阮双琛郭春雨刘承香
深圳市激光工程重点实验室,深圳大学电子科学与技术学院,广东省高校先进光学精密制造技术重点实验室,深圳 518060
Author(s):
Hu Xuejuan Ruan Shuangchen Guo Chunyu and Liu Chengxiang
Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
红外图像人民币纸币识别梯度方向直方图支持向量机Fisher准则精密鉴伪图像特征提取
Keywords:
infrared image Chinese RMB currency recognition histogram of oriented gradients support vector machine Fisher criterion precision counterfeit detection image feature extraction
分类号:
O 439; TP 391
DOI:
10.3724/SP.J.1249.2014.05487
文献标志码:
A
摘要:
提出一种基于改进梯度方向直方图和支持向量机分类器的人民币识别方法.利用人民币红外图像中斑马线特征进行真伪识别,通过Fisher准则进行特征块选择实现梯度方向直方图特征的降维.针对斑马线防伪图案进行实验. 结果表明,该方法能克服红外图像中的背景干扰和噪声,得到较好鉴伪结果.
Abstract:
This paper presents a method to improve the histograms of oriented gradient descriptors and support vector machine classifier for Chinese RMB currency recognition. The zebra-stripe pattern of the infrared images of RMB paper currency was used for real and counterfeit classification. The dimension of histograms of oriented gradient features is decreased by feature block selection based on the Fisher criterion. Several experiments on zebra-stripe pattern recognition were conducted, and the proposed method shows its robustness against background interference and noise.

参考文献/References:

[1] [s.n.]. IR Security Inks Application on the Paper Currency[EB/OL].[2011-12-30]. http: // blog.jibi.net/group.asp?cmd=show&gid=4&pid=242.(in Chinese)
佚名. 红外防伪油墨在纸币上的应用[EB/OL].[2011-12-30]. http: // blog.jibi.net/group.asp?cmd=show&gid=4&pid=242.
[2] Liang Youjie. Security technology of RMB and identification[M]. Beijing:China Financial Publishing House,2005: 226-272.(in Chinese)
梁友杰. 人民币防伪技术及真伪鉴别[M].北京:中国金融出版社,2005:226-272.
[3] Hinwood A, Preston P, Suaning G, et al. Bank note recognition for the vision impaired[J]. Australasion Physical and Engineering Science in Medicine, 2006, 29(2): 229-233.
[4] Choi E, Lee J, Yoon J. Feature extraction for bank note classification using wavelet transform[C]// The 18th International Conference on Pattern Recognition. Hong Kong(China): IEEE Press, 2006, 2: 934-937.
[5] Takeda F, Omatu S. Bank note recognition system using neural network with random masks[C]// Proceeding of the World Congress on Neural Networks. Portland(USA): International Neural Network Society,1993:I-241-I-244.
[6] Takeda F, Nishikage T, Matsumoto Y. Characteristic extraction of paper currency using symmetrical masks optimized by GA and neuro-recognition of multi-national paper currency[C]// International Conference on Neural Networks. Alaska(USA): IEEE Press, 1998, 1: 634-639.
[7] Hasanuzzaman F M, Yang X, Tian Y. Robust and effective component-based banknote recognition for the blind[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1021-1030.
[8] He C, Girolami M, Ross G. Employing optimized combinations of one-class classifiers for automated currency validation[J]. Pattern Recognition, 2004, 37(6): 1085-1096.
[9] He C, Girolami M, Ross G. Employing optimized combinations of one-class classifiers for automated currency validation[J]. Pattern Recognition, 2004, 37(6): 1085-1096.
[10] Ionescu M, Ralescu A. Fuzzy hamming distance based banknote validator[C]// The 14th IEEE International Conference on the Fuzzy Systems. Vancouver (Canada): IEEE Press, 2005:300-305.
[11] Masato A, Tetsuo K, Yoshiyasu T. Euro banknote recognition system using a three-layered perceptron and rbf networks[J]. IPSJ Transactions on Mathematical Modeling and Its Applications, 2003, 44:99-109.
[12] Bruna A, Farinella G M, Guarnera G C, et al. Forgery detection and value identification of Euro banknotes[J]. Sensors, 2013, 13(2): 2515-2529.
[13] Hu Xuejuan, Ruan Shuangchen, Yang Jinhui, et al. An Identification Device for Paper Currency or Notes:China,201120235245.4[P]. 2012-02-08.
[14] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// International Conference on Computer Vision and Pattern Recognition. San Diego(USA): IEEE Press, 2005, 1: 886-893
[15] Vapnik V N. The nature of statistical learning theory[M]. New York(USA): Springer-Verlag,1995.
[16] Hu Xuejuan, Liu Chengxiang, Yang Jinhui, et al. Convolution approach for zebra stripe feature extraction of infrared paper currency image[J]. Laser & Infrared, 2012, 42(10): 1196-1201.(in Chinese)
胡学娟,刘承香,杨锦辉, 等. 基于卷积运算的纸币红外图像斑马线特征提取[J]. 激光与红外,2012,42(10):1196-1201.

备注/Memo

备注/Memo:
Received:2014-04-01;Accepted:2014-08-05
Foundation:National Natural Science Foundation of China (61308049); PhD Start-up Fund of Natural Science Foundation of Guangdong Province (S2013040012496)
Corresponding author:Professor Ruan Shuangchen.E-mail: scruan@szu.edu.cn
Citation:Hu Xuejuan, Ruan Shuangchen, Guo Chunyu, et al.Improved histograms of oriented gradients for Chinese RMB currency recognition[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(5): 487-492.
基金项目:国家自然科学基金资助项目(61308049);广东省自然科学基金博士启动资助项目(S2013040012496)
作者简介:胡学娟(1981—),女(汉族),湖北省安陆市人,深圳大学助理研究员、博士. E-mail:xjhu@szu.edu.cn
引文:胡学娟,阮双琛,郭春雨,等. 基于改进梯度方向直方图的人民币识别[J]. 深圳大学学报理工版,2014,31(5):487-492.(英文版)
更新日期/Last Update: 2014-09-11