[1]张培新,汪静伟,黄亮,等.锂离子电池硅基负极材料研究现状与发展趋势[J].深圳大学学报理工版,2014,31(5):441-451.[doi:10.3724/SP.J.1249.2014.05441]
 Zhang Peixin,Wang Jingwei,Huang Liang,et al.Research status and development trend on Si-based anode materials of lithium ion batteries[J].Journal of Shenzhen University Science and Engineering,2014,31(5):441-451.[doi:10.3724/SP.J.1249.2014.05441]
点击复制

锂离子电池硅基负极材料研究现状与发展趋势()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第5期
页码:
441-451
栏目:
化学与化工
出版日期:
2014-09-20

文章信息/Info

Title:
Research status and development trend on Si-based anode materials of lithium ion batteries
文章编号:
201405001
作者:
张培新1 汪静伟1黄亮1张冬云12
1)深圳大学化学与化工学院,深圳 518060
2)哈尔滨工业大学深圳研究生院,深圳 518055
Author(s):
Zhang Peixin1 Wang Jingwei1 Huang Liang1 and Zhang Dongyun1 2
1) College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China
2)Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P.R.China
关键词:
应用化学锂离子电池负极材料硅薄膜硅基合金硅基复合材料
Keywords:
applied chemistry lithium ion batteries anode materials silicon film silicon-based alloy silicon-based nanocomposite materials
分类号:
O 69
DOI:
10.3724/SP.J.1249.2014.05441
文献标志码:
A
摘要:
硅基负极材料因具有高电化学容量是一种极具发展前景的锂离子电池负极材料.评述单质硅、硅-金属合金、硅-碳复合材料以及其他硅基复合材料作为锂离子二次电池负极材料的最新研究成果,分析锂离子电池硅负极材料存在问题,探讨硅基负极材料的合成、制备工艺以及未来硅基材料的研究方向和应用前景. 分析结果表明,通过硅的纳米化、无定形化、合金化及复合化等技术手段,实现硅基负极材料同时兼备高容量、长寿命、高库伦效率和倍率性能,是未来的主要发展方向.
Abstract:
The silicon-based anode materials are of great importance for lithium ion batteries (LIBs) because of their high capacity. This paper reviews the latest research achievements of the silicon, silicon-metal alloys, silicon-carbon composites and other composite materials as anodes materials and discusses their research and application prospects. It also analyzes the existing problems of pure silicon anodes and focuses mainly on the novel silicon based anode materials. Regarding future research and application, the predominant direction will be to promote both cycle performance and electrochemical performance through the comprehensive application of nanocrystallization, amorphization, alloying and compounding of silicon-based materials.

参考文献/References:

[1] Zhang Guoqing, Ma Li, Ni Pei, et al. Research progress of low temperature electrlytes for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2008, 27(2): 209-213.( in Chinese )
张国庆, 马莉, 倪佩, 等. 锂离子电池低温电解液的研究进展[J]. 化工进展, 2008, 27(2): 209-213.
[2] Jiang Z, Li C, Hao S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochimica Acta, 2014, 115: 393-398.
[3] Yu C, Li X, Ma T, et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation[J]. Advanced Energy Materials, 2012, 2(1): 68-73.
[4] Huggins R A. Lithium alloy negative electrodes[J]. Journal of Power Sources, 1999(81/82): 13-19.
[5] Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35): 8762-8767.
[6] Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5): 2318-2323.
[7] Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of The Electrochemical Society, 2004, 151(6): A838-A842.
[8] Zhu Y, Liu W, Zhang X, et al. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries[J]. Langmuir, 2012, 29(2): 744-749.
[9] Al-Maghrabi M A, Thorne J S, Sanderson R J, et al. A combinatorial study of the Sn-Si-C system for Li-ion battery applications[J]. Journal of The Electrochemical Society, 2012, 159(6): A711-A719.
[10] Liu H K, Guo Z, Wang J, et al. Si-based anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(45): 10055-10057.
[11] Hwa Y, Park C M, Sohn H J. Modified SiO as a high performance anode for Li-ion batteries[J]. Journal of Power Sources, 2013, 222: 129-134.
[12] Abel P R, Lin Y M, Celio H, et al. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation[J]. ACS Nano, 2012, 6(3): 2506-2516.
[13] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10(10): 725-763.
[14] Wang C M, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3): 1624-1632.
[15] Ogata K, Salager E, Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature Communications, 2014, 5: 3217.
[16] Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249.
[17] Tao Zhanliang, Wang Hongbo, Chen Jun. Si-based materials as the anode of lithium-ion batteries[J]. Progress in Chemistry, 2011, 23(2/3): 318-327.( in Chinese )
陶占良, 王洪波. 陈军. 锂离子电池负极硅基材料[J]. 化学进展, 2011, 23(2/3): 318-327.
[18] Choi N S, Yew K H, Kim H, et al. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte[J]. Journal of Power Sources, 2007, 172(1): 404-409.
[19] Ma H, Cheng F, Chen J Y, et al. Nest-like silicon nanospheres for high-capacity lithium storage[J]. Advanced Materials, 2007, 19(22): 4067-4070.
[20] Chockla A M, Klavetter K C, Mullins C B, et al. Tin-seeded silicon nanowires for high capacity Li-ion batteries[J]. Chemistry of Materials, 2012, 24(19): 3738-3745.
[21] Cui L F, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1): 491-495.
[22] Song T, Xia J, Lee J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5): 1710-1716.
[23] Fll H, Hartz H, Ossei Wusu E, et al. Si nanowire arrays as anodes in Li ion batteries[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2010, 4(1/2): 4-6.
[24] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
[25] Chen L, Xie J, Yu H, et al. An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1157-1162.
[26] Uehara M, Suzuki J, Tamura K, et al. Thick vacuum deposited silicon films suitable for the anode of Li-ion battery[J]. Journal of Power Sources, 2005, 146(1/2): 441-444.
[27] Kang Y M, Park M S, Lee J Y, et al. Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery[J]. Carbon, 2007, 45(10): 1928-1933.
[28] Doh C H, Shin H M, Kim D H, et al. A new composite anode, Fe-Cu-Si/C for lithium ion battery[J]. Journal of Alloys and Compounds, 2008, 461(1/2): 321-325.
[29] Vediappan K, Lee C W. Synthesis and electrochemical characterization of Si-Mn alloy anode materials for high energy lithium secondary batteries[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(7): 5969-5974.
[30] Jeon S M, Song J J, Kim S I, et al. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery[J]. Metals and Materials International, 2013, 19(1): 27-31.
[31] Yan J M, Huang H Z, Zhang J, et al. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries[J]. Journal of Power Sources, 2008, 175(1): 547-552.
[32] Choi N S, Yao Y, Cui Y, et al. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9825-9840.
[33] Chen L B, Xie J Y, Yu H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(28): 8149-8153.
[34] Wang J, Wang Y, Zhang P, et al. Preparation and electrochemical properties of binary SixSb immiscible alloy for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 610: 308-314.
[35] Kim J W, Ryu J H, Lee K T, et al. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries[J]. Journal of Power Sources, 2005, 147(1/2): 227-233.
[36] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active centre[J]. Journal of Power Sources, 2000, 88(2): 278-281.
[37] Liu W R, Wu N L, Shieh D T, et al. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2007, 154(2): A97-A102.
[38] Wu C H, Lui T S, Hung F Y, et al. Effects of vacuum annealing on the charge-discharge characteristics of eutectic Al-Si/Al thin film as anode material for Li-ion batteries[J]. Materials Transactions, 2012, 53(9): 1669-1673.
[39] Wang F, Yao G, Xu M, et al. Ag-Sb composite prepared by chemical reduction method as new anode materials for lithium-ion batteries[J]. Materials Science and Engineering: B, 2011, 176(5): 442-445.
[40] Zhang L P, Lu F F, Song X L, et al. Effects of the phase constitution and microstructure on the electrochemical properties of melt-spun Al88-XSi12MnX anode materials for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2012, 42(10): 843-850.
[41] Ahn D K, Song J J, Ahn H J, et al. The effect of Ni on the microstructures and electrochemical properties of Si-Ti base alloys for lithium secondary batteries[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3522-3525.
[42] Kang H K, Lee S R, Cho W I, et al. Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in Lithium-ion secondary batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(5): 1569-1577.
[43] Chae J E, Yang J M, Park K J, et al. Microstructural analysis of Si-Ti-Fe alloy anode materials for Li-ion secondary batteries[J]. Korean Journal of Metals and Materials, 2013, 51(6): 429-436.
[44] Liu Y F, He Y P, Ma R J, et al. Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction[J]. Electrochemistry Communications, 2012, 25(1): 15-18.
[45] Song T, Kil K C, Jeon Y, et al. Nitridated Si-Ti-Ni alloy as an anode for Li rechargeable batteries[J]. Journal of Power Sources, 2014, 253: 282-286.
[46] Cho J S, Hong S H, Chu Y Y, et al. In the effect of transition metals addition on electrochemical properties of Si-Ti-Ni alloy anode for lithium ion batteries[C]// Section Anodes Ⅱ of 224th ECS Meeting. San Francisco (USA) :The Electrochemical Society, 2013: 964-964.
[47] Zhang L, Song X, Wang F, et al. The electrochemical properties of Al-Si-Ni alloys composed of nanocrystal and metallic glass for lithium-ion battery anodes[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2159-2167.
[48] Lacroix-Orio L, Tillard M, Belin C. Synthesis, crystal and electronic structure of Li13Ag5Si6, a potential anode for Li-ion batteries[J]. Solid State Sciences, 2008, 10(1): 5-11.
[49] Kim I S, Blomgren G E, Kumta P N. Study of electrochemical inactivity of nanocomposites generated using high-energy mechanical milling[J]. Journal of electrochemical society, 2005, 152(1): A248-A254.
[50] Guo S, Li H X, Bai H M, et al. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 1141-1148.
[51] Hwang C M, Park J W. Electrochemical properties of Si-Ge-Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(19): 6737-6747.
[52] Wang X, Wen Z, Liu Y, et al. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries[J]. Electrochimica Acta, 2009, 54(20): 4662-4667.
[53] Ng S H, Wang J, Konstantinov K, et al. Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes[J]. Journal of Power Sources, 2007, 174(2): 823-827.
[54] Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J]. Journal of Power Sources, 2009, 189(1): 733-737.
[55] Lee J K, Kung M C, Trahey L, et al. Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance Lithium ion battery anodes[J]. Chemistry of Materials, 2008, 21(1): 6-8.
[56] Xu Y, Yin G, Ma Y, et al. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source[J]. Journal of Materials Chemistry, 2010, 20(16): 3216-3220.
[57] Zhou M, Pu F, Wang Z, et al. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11394-11401.
[58] Qiao L, Sun X, Yang Z, et al. Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries[J]. Carbon, 2013, 54: 29-35.
[59] Liu X, Xie K, Zheng C M, et al. Si-O-C materials prepared with a sol-gel method for negative electrode of lithium battery[J]. Journal of Power Sources, 2012, 214: 119-123.
[60] Yin Y X, Xin S, Wan L J, et al. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14148-14154.

相似文献/References:

[1]唐文伟,桂文池,曾新平.聚硫酸铁铝制备改进及其处理重金属废水[J].深圳大学学报理工版,2011,28(No.3(189-282)):276.
 TANG Wen-wei,GUI Wen-chi,and ZENG Xin-ping.Improvement of preparation of PFAS and its effect on treating heavy metal in wastewater[J].Journal of Shenzhen University Science and Engineering,2011,28(5):276.
[2]刘剑洪,吴双泉,何传新,等.碳纳米管和碳微米管的结构、性质及其应用[J].深圳大学学报理工版,2013,30(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2013.01001]
 Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(5):1.[doi:10.3724/SP.J.1249.2013.01001]
[3]任祥忠,刘涛,张培新,等.锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2研究进展[J].深圳大学学报理工版,2014,31(3):239.[doi:10.3724/SP.J.1249.2014.03239]
 Ren Xiangzhong,Liu Tao,Zhang Peixin,et al.Progress of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries[J].Journal of Shenzhen University Science and Engineering,2014,31(5):239.[doi:10.3724/SP.J.1249.2014.03239]
[4]罗仲宽,尹春丽,吴其兴,等.有机电解液型锂空气电池空气电极研究进展[J].深圳大学学报理工版,2015,32(2):111.[doi:10.3724/SP.J.1249.2015.02111]
 Luo Zhongkuan,Yin Chunli,Wu Qixing,et al.Research progress on air electrode in organic electrolyte lithium-air battery[J].Journal of Shenzhen University Science and Engineering,2015,32(5):111.[doi:10.3724/SP.J.1249.2015.02111]
[5]王振峰,张小雪,李翠华,等.离子液体复合电解质与三元正极的相容性[J].深圳大学学报理工版,2015,32(3):251.[doi:10.3724/SP.J.1249.2015.03251]
 Wang Zhenfeng,Zhang Xiaoxue,Li Cuihua,et al.Compatibility of ternary cathode with ionic liquid-based composite electrolyte[J].Journal of Shenzhen University Science and Engineering,2015,32(5):251.[doi:10.3724/SP.J.1249.2015.03251]
[6]李永亮,马定涛,张培新.静电纺丝制备富锂锰基锂电正极材料及其性能[J].深圳大学学报理工版,2017,34(2):132.
 Li Yongliang,Ma Dingtao,and Zhang Peixin. Electrospinning preparation and performance of lithium-rich manganese-based lithium ion battery cathode material[J].Journal of Shenzhen University Science and Engineering,2017,34(5):132.
[7]石钏,李永亮,任祥忠,等.高性能锂电正极材料LiV3O8-MWCNTs的制备与性能[J].深圳大学学报理工版,2017,34(6):551.[doi:10.3724/SP.J.1249.2017.06551]
 Shi Chuan,Li Yongliang,Ren Xiangzhong,et al.Preparation and properties of LiV3O8-MWCNTs as high performance cathode materials for lithium-ion battery[J].Journal of Shenzhen University Science and Engineering,2017,34(5):551.[doi:10.3724/SP.J.1249.2017.06551]
[8]杨世利,常家华,邢智,等.铅蓄电池工业场地铅污染分布特征及风险分析[J].深圳大学学报理工版,2019,36(6):649.[doi:10.3724/SP.J.1249.2019.06649]
 YANG Shili,CHANG Jiahua,et al.Distribution characteristics and risk analysis of lead pollution in lead storage battery industrial sites[J].Journal of Shenzhen University Science and Engineering,2019,36(5):649.[doi:10.3724/SP.J.1249.2019.06649]

备注/Memo

备注/Memo:
Received:2014-06-25;Accepted:2014-07-17
Foundation:National Natural Science Foundation of China (51374146); Shenzhen Science and Technology Research Foundation for Basic Project (JCYJ20120613173950029)
Corresponding author:Professor Zhang Peixin. E-mail: pxzhang@szu.edu.cn
Citation:Zhang Peixin, Wang Jingwei, Huang Liang, et al. Research status and development trend on Si-based anode materials of lithium ion batteries[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(5): 441-451.(in Chinese)
基金项目:国家自然科学基金资助项目(51374146);深圳市基础研究计划资助项目(JCYJ20120613173950029)
作者简介:张培新(1967—),男(瑶族),广西壮族自治区贵港市人,深圳大学教授、博士生导师,E-mail:pxzhang@szu.edu.cn
引文:张培新, 汪静伟,黄亮,等. 锂离子电池硅基负极材料研究现状与发展趋势[J]. 深圳大学学报理工版,2014,31(5):441-451.
更新日期/Last Update: 2014-09-11