[1]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(No.4(331-440)):367-373.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(331-440)):367-373.[doi:10.3724/SP.J.1249.2014.04367]
点击复制

递减步长果蝇优化算法及应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年No.4(331-440)
页码:
367-373
栏目:
电子与信息科学
出版日期:
2014-07-16

文章信息/Info

Title:
Research on and application of diminishing step fruit fly optimization algorithm
文章编号:
201404005
作者:
宁剑平1王冰12李洪儒2许葆华2
1)广州军区76127部队,湖南 郴州 424202
2)军械工程学院,石家庄 050003
Author(s):
Ning Jianping1 Wang Bing1 2 Li Hongru2 and Xu Baohua2
1) 76127 Unit, Guangzhou Military Area, Chenzhou 424202, Hunan Province, P.R.China
2) Ordnance Engineering College, Shijiazhuang 050003, P.R.China
关键词:
人工智能优化算法果蝇算法局部最优递减步长支持向量机回归模型
Keywords:
artificial intelligence optimization algorithm fruit fly algorithm global optimiation diminishing step support vector machine (SVM) regression model
分类号:
TP 391
DOI:
10.3724/SP.J.1249.2014.04367
文献标志码:
A
摘要:
提出一种递减步长果蝇优化算法(diminishing step fruit fly optimization algorithm,DS-FOA).该算法的搜索步长随果蝇觅食进程逐步减小,从而使果蝇群体在觅食初期具有较强的全局搜索能力,在觅食后期具有较强的局部寻优能力,从而实现全局搜索能力和局部寻优能力的平衡.将该算法用于支持向量机(support vector machine,SVM)回归模型的惩罚因子和核函数参数优化中,结果表明,DS-FOA收敛速度快,全局搜索与局部寻优能力强.与其他算法相比,由DS-FOA优化参数的SVM回归模型均方误差最低,回归效果好.
Abstract:
A diminishing step fruit fly optimization algorithm (DS-FOA) is proposed.The step length is decreased progressively along with the process of foraging.DS-FOA demostrates preferable global optimization capability in early stage and local optimization capability in later period.Dynamic balance is achieved between global and local optimizing capability.Also DS-FOA is applied in the field of support vector machine (SVM) regression model parameter optimization.Experimental results show that the DS-FOA has fast convergence speed and powerful global and local optimization capability.The SVM model using DS-FOA has the lowest error of mean square and the best optimization result.

参考文献/References:

[1] Vapnik V N.The nature of statistical learning theory[M].New York(USA):Springer-Verlag,1995.
[2] Cortes C,Vapnik V N.Supporter vector networks[J].Machine Learning,1995,20(3):273-297.
[3] Chapelle O,Vapnik V,Bousquet O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
[4] Zhu Fengming,Fan Minglong.Chaos particle swarm optimization algorithm for optimizing the parameter of SVM[J].Computer Simulation,2010,27(11):183-186.(in Chinese)
朱凤明,樊明龙.混沌粒子群算法对支持向量机模型参数的优化[J].计算机仿真,2010,27(11):183-186.
[5] Zhou Xiaojian, Ma Yizhong, Liu Liping, et al. Gradient-enhanced least squares support vector regression[J].Journal of Nanjing University of Science and Technology Natural Science,2011,35(1):138-143.(in Chinese)
周晓剑,马义中,刘利平,等.基于梯度信息的最小二乘支持回归机[J].南京理工大学学报自然科学版,2011,35(1):138-143.
[6] Chen Tao,Yong Longquan,Deng Fang’an,et al.Parameters selection of support vector machine based on differential evolution[J].Computer Engineering and Applications,2011,47(5):24-26.(in Chinese)
陈涛,雍龙泉,邓方安,等.基于差分进化算法的支持向量机参数选择[J].计算机工程与应用,2011,47(5):24-26.
[7] Zhang Xiang, Chen Lin.Fault diagnosis based on support vector machines optimized by fruit fly optimization algorithm[J].Electronic Design Engineering,2013,21(16):90-93.(in Chinese)
张翔,陈林.基于果蝇优化算法的支持向量机故障诊断[J].电子设计工程,2013,21(16):90-93.
[8] Cheng Hui,Liu Chengzhong.Mixed fruit fly optimization based on chaotic mapping[J].Computer Engineering,2013,39(5):218-221.(in Chinese)
程慧,刘成忠.基于混沌映射的混合果蝇优化算法[J].计算机工程,2013,39(5):218-221.
[9] Wang Xuegang,Zou Zaojian.FOA-based SVM parameter optimization and its application in ship manoeuvring prediction[J].Journal of Shanghai Jiaotong University,2013,47(6):884-888.(in Chinese)
王雪刚,邹早建.基于果蝇优化算法的支持向量机参数优化在船舶操纵预报中的应用[J].上海交通大学学报,2013,47(6):884-888.
[10] Zhou Ping,Bai Guangchen.Robust design of turbine-blade low cycle fatigue life based on neural networks and fruit fly optimization algorithm[J].Journal of Aerospace Power,2013,28(5):1013-1018.(in Chinese)
周平,白广忱.基于神经网络与果蝇优化算法的涡轮叶片低循环疲劳寿命健壮性设计[J].航空动力学报,2013,28(5):1013-1018.
[11] Pan W T.A new fruit fly optimization algorithm:taking the financial distress model as an example [J]. Knowledge-Based Systems,2012,26(1):69-74.
[12] Tang Jun.Principle of particle swarm optimization algorithm and applications in civil engineering [J]. Computer & Digital Engineering,2009,37(10):153-156.(in Chinese)
唐俊.微粒群算法原理及改进算法在土木工程中应用[J].计算机与数字工程,2009,37(10):153-156.
[13] Wang Huadong,Li Wei.Study on logistics distribution route optimization by improved particle wwarm optimization[J].Computer Simulation,2012,29(5):243-246.(in Chinese)
王华东,李薇. 粒子群算法的物流配送路径优化研究[J].计算机仿真,2012,29(5):243-246.
[14] Yao Jinbao,Yao Baozhen,Yin Zhihong,et al.A bus headway optimization model with dual-population genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2012,29(6):559-564.(in Chinese)
姚锦宝,姚宝珍,尹智宏,等.基于双种群遗传算法的公交线路发车间隔优化[J].深圳大学学报理工版,2012,29(6):559-564.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(No.4(331-440)):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(331-440)):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(331-440)):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(331-440)):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(No.1(001-110)):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(331-440)):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(No.3(221-330)):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(331-440)):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(No.2(111-220)):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(No.4(331-440)):196.[doi:10.3724/SP.J.1249.2015.02000]
[8]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(No.3(221-330)):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(No.4(331-440)):281.[doi:10.3724/SP.J.1249.2015.03281]
[9]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
 Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(No.4(331-440)):8.
[10]陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J].深圳大学学报理工版,2017,34(No.3(221-330)):300.[doi:10.3724/SP.J.1249.2017.03300]
 Chen Xingyu,Zhou Zhan,Huang Junwen,et al.A keyword-based mining method for customer segmentation[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(331-440)):300.[doi:10.3724/SP.J.1249.2017.03300]

备注/Memo

备注/Memo:
Received:2012-04-03;Revised:2014-01-23;Accepted:2014-05-09
Foundation:National Natural Science Foundation of China (51275524)
Corresponding author:Professor Li Hongru.E-mail:lihr168@sohu.com
Citation:Ning Jianping,Wang Bing,Li Hongru, et al.Research on and application of diminishing step fruit fly optimization algorithm[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 367-373.(in Chinese)
基金项目:国家自然科学基金资助项目(51275524)
作者简介:宁剑平(1966—),男(汉族),湖南省衡阳市人,广州军区76127部队高级工程师.E-mail:1002624905@qq.com
引文:宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J]. 深圳大学学报理工版,2014,31(4):367-373.
更新日期/Last Update: 2014-06-25