[1]袁小聪,贾平,雷霆,等.光学旋涡与轨道角动量光通信[J].深圳大学学报理工版,2014,31(No.4(331-440)):331-346.[doi:10.3724/SP.J.1249.2014.04331]
 Yuan Xiaocong,Jia Ping,Lei Ting,et al.Optical vortices and optical communication with orbital angular momentum[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(331-440)):331-346.[doi:10.3724/SP.J.1249.2014.04331]
点击复制

光学旋涡与轨道角动量光通信()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年No.4(331-440)
页码:
331-346
栏目:
光电工程
出版日期:
2014-07-16

文章信息/Info

Title:
Optical vortices and optical communication with orbital angular momentum
文章编号:
201404001
作者:
袁小聪1贾平2雷霆1张萌2闵长俊1李玉茹3李朝晖3牛憨笨1
1) 深圳大学光电工程学院,光电子器件与系统教育部/广东省重点实验室,深圳 518060
2) 南开大学现代光学研究所,光电信息技术科学教育部重点实验室,天津300071
3) 暨南大学光子技术研究所,广州510632
Author(s):
Yuan Xiaocong1Jia Ping2Lei Ting1 Zhang Meng2Min Changjun1Li Yuru3Li Zhaohui3and Niu Hanben1
1) College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and System of Ministry of Education and
Guangdong Province, Shenzhen University, Shenzhen 518060, P.R.China
2) Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology of Ministry of Education,
Nankai University, Tianjin 300071, P.R.China
3) Institute of Photonics Technology, Jinan University, Guangzhou 510632, P.R.China
关键词:
Keywords:
optical communication technology optical vortices orbital angular momentum free-space optical communication multiplexing modulation uncertainty principle communication capacity bit error rate
分类号:
TN 929.1
DOI:
10.3724/SP.J.1249.2014.04331
文献标志码:
A
摘要:
光学旋涡(optical vortices, OV)光束包含螺旋型相位因子,具有全新的自由度——轨道角动量(orbital angular momentum, OAM).OAM本征值为l, 且理论上拓扑荷l可取任意整数,这为光学旋涡在光通信系统中的各种应用提供基础.目前有很多方法可用于光学旋涡的产生与检测,而光学旋涡在光通信系统中的应用也正是基于这些方法.OAM在自由空间光通信系统中的应用机制可分为OAM键控(OAM状态作为调制方式)和OAM复用(OAM光束作为复用信道).针对这两种机制已展开大量的理论研究和实验探索,认为光学旋涡可为丰富自由空间光通信系统的调制方式和增加传输容量提供潜在的解决方案.光学旋涡光束的OAM和角向位置的不确定性关系也为之带来了与生俱来的安全优势.光学旋涡的独有特性为光通信系统的性能改善提供了巨大潜力.
Abstract:
An optical vortices(OV)beam with a helical phase term shows a new degree of freedom, namely orbital angular momentum (OAM). The eigenvalue of OAM is l, and the topological charge l can be any integer in principle, which offers the basis for various applications of OV in optical communication system. There are many approaches so far for the generation and detection of OV on which the applications of OV in optical communication are based. The application mechanisms of OAM in free-space optical communication (FSO) system can be classified into two different categories: one is OAM shift keying (OAM-SK) where OAM states play as modulation formats; the other is OAM division multiplexing (OAM-DM) where OAM beams play as multiplexing channels. For these two mechanisms, there has been mass theoretical researches and experimental explorations. OV offer potential solutions for enriching the modulation formats or increasing the transmission capacity of FSO system. Furthermore, the uncertainty relationship between OAM and angular position of OV beams also brings about inherent security advantage. These characteristics of OV can provide great potential to improve the performances of OAM-embedded FSO communication system.

参考文献/References:

[1] Pismen L M. Vortices in nonlinear fields[M]. Oxford(UK): Oxford Science Publications,1999: 101-123.
[2] Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society A, 1974, 336(1605): 165-190.
[3] Allen L, Padgett M, Babiker M. The orbital angular momentum of light[J]. Progress in Optics, 1999, 39: 291-372.
[4] Allen L, Barnett S M, Padgett M J. Optical angular momentum[M]. London: Institute of Physics Publishing, 2003.
[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.
[6] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844):313-316.
[7] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.
[8] Siegman A E. Lasers[M]. Sausalito(USA): University Science Books, 1986.
[9] Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum[J]. Physical Review Letters, 2002, 88(1): 013601-1-013601-4.
[10] Gibson G, Courtial J, Padgett M J. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.
[11] Gibson G, Courtial J, Vasnetsov M, et al. Increasing the data density of free-space optical communications using orbital angular momentum[J]. Proceedings of SPIE, 2004, 5550: 367-373.
[12] Bouchal Z, Celechovsk R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131-1-131-15.
[13] Beijersbergen M W, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phase plate[J]. Optics Communications, 1994, 112(5/6): 321-327.
[14] Kolobov M I. Quantum imaging[M]. New York(USA): Springer, 2007.
[15] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.
[16] Durnin J, Miceli J J Jr, Eberly J. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.
[17] Gutierrez-Vega J, Iturbe-Castillo M, Chavez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.
[18] Gonzalez N, Molina-Terriza G, Torres J. How a Dove prism transforms the orbital angular momentum of a light beam[J]. Optics Express, 2006, 14(20): 9093-9102.
[19] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.
[20] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905-1-163905-4.
[21] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.
[22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[23] Basistiy I V, Bazhenov V Y, Soskin M S, et al. Optics of light beams with screw dislocations[J]. Optics Communications, 1993, 103(5): 422-428.
[24] Harris M, Hill C A, Tapster P R, et al. Laser modes with helical wave fronts[J]. Physical Review A, 1994, 49(4): 3119-3122.
[25] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4075.
[26] Courtial J, Robertson D A, Dholakia K, et al. Rotational frequency shift of a light beam[J]. Physical Review Letters, 1998, 81(22): 4828-4830.
[27] Basistiy I V, Slyusar V V, Soskin M S, et al. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam[J]. Optics Letters, 2003, 28(14): 1185-1187.
[28] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25): 257901-1-257901-4.
[29] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon[J]. Physical Review Letters, 2004, 92(1): 013601-1-013601-4.
[30] Guo Chengshan, Yue ShuJuan, Wei Gongxing. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23): 231104-1-231104-3.
[31] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601-1-153601-4.
[32] Lavery M P J, Berkhout G C G, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation[J]. Journal of Optics, 2011, 13(6): 064006-1-064006-4.
[33] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 2012, 20(3): 2110-2115.
[34] Lavery M P J, Robertson D J, Sponselli A, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states[J]. New Journal of Physics, 2013, 15(1): 013024-1-013024-7.
[35] Chen Jun, Zhao Xing, Fang Zhiliang, et al. Modified optical vortices for encoding topological charges with principal-sidelobe ring relationships[J]. Optics Letters, 2010, 35(9): 1485-1487.
[36] Guo Chengshan, Liu Xuan, He Jingliang, et al. Optimal annulus structures of optical vortices[J]. Optics Express, 2004, 12(19): 4625-4634.
[37] Jia P, Yang Y, Min C J, et al. Sidelobe-modulated optical vortices for free-space communication[J]. Optics Letters, 2013, 38(4): 588-590.
[38] Liu Max Ming Kang. Principles and applications of optical communications[M]. Chicago(USA): Irwin, 1996.
[39] Proakis J G. Digital communication[M]. New York (USA): McGraw-Hill, 2000.
[40] Liu Yidong, Gao Chunqing, Gao Mingwei, et al. Superposition and detection of two helical beams for optical orbital angular momentum communication[J]. Optics Communications, 2008, 281(14): 3636-3639.
[41] Lin J, Yuan X C, Tao S H, et al. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states[J]. Applied Optics, 2007, 46(21): 4680-4685.
[42] Wang Z X, Zhang N, Yuan X C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication[J]. Optics Express, 2011, 19(2): 482-492.
[43] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 2010, 35(20): 3495-3497.
[44] Zhang N, Davis J A, Moreno I, et al. Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating[J]. Optics Express, 2010, 18(25): 25987-25992.
[45] Lin J, Yuan X C, Tao S H, et al. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element[J]. Optics Letters, 2005, 30(24): 3266-3268.
[46] Lin J, Yuan X C, Tao S. Orbital angular momentum (OAM) multiplexing in free-space optical data transfer[J]. Proceeding of SPIE, 2006, 6304: 630411-1-630411-5.
[47] elechovsk R, Bouchal Z. Optical implementation of the vortex information channel[J]. New Journal of Physics, 2007, 9(9): 328-1-328-12.
[48] Djordjevic I B. Deep-space and near-earth optical communications by coded orbital angular momentum (OAM) modulation[J]. Optics Express, 2011, 19(15): 14277-14289.
[49] Djordjevic I B, Denic S, Anguita J, et al. LDPC-coded MIMO optical communication over the atmospheric turbulence channel[J]. Journal of Lightwave Technology, 2008, 26(5): 478-487.
[50] Djordjevic I B, Arabaci M. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Optics Express, 2010, 18(24): 24722-24728.
[51] Martelli P, Gatto A, Boffi P, et al. Free-space optical transmission with orbital angular momentum division multiplexing[J]. Electronics Letters, 2011, 47(17): 972-973.
[52] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.
[53] Wang J, Yang J Y, Fazal I, et al. Experimental demonstration of 100-Gbit/s DQPSK data exchange between orbital-angular-momentum modes[C]// International Conference on Optical Fiber Communication. Los Angeles(USA):Optical Society of America, 2012: OW1I. 5-1- OW1I. 5-3.
[54] Fazal I M, Wang J, Yang J Y, et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM[C]// International Conference on Frontiers in Optics. San Jose(USA):Optical Society of America, 2011: FTuT1-1- FTuT1-2.
[55] McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam[J]. Applied Optics, 1998, 37(3): 469-472.
[56] Volpe G, Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams[J]. Optics Communications, 2004, 237(1): 89-95.
[57] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Physical Review Letters, 2006, 96(4): 043604-1-043604-4.
[58] Franke-Arnold S, Barnett S M, Yao E, et al. Uncertainty principle for angular position and angular momentum[J]. New Journal of Physics, 2004, 6(1): 103-1-103-8.
[59] elechovsk R, Bouchal Z. Generation of variable mixed vortex fields by a single static hologram[J]. Journal of Modern Optics, 2006, 53(4): 473-480.
[60] Djordjevic I B, Cvijetic M, Xu L, et al. Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation[J]. IEEE Photonics Technology Letters , 2007, 19(12): 874-876.
[61] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901-1-153901-4.
[62] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of Optical Society of America A, 2008, 25(1): 225-230.
[63] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414-2429.
[64] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142-144.
[65] Malik M, O’ Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195-13200.
[66] Nauerth S, Moll F, Rau M, et al. Air-to-ground quantum communication[J]. Nature Photonics, 2013, 7(5): 382-386.
[67] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.
[68] Tyson R. Principles of adaptive optics[M]. Oxford(UK): CRC Press, 2010.
[69] Platt B C. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
[70] Murphy K, Burke D, Devaney N, et al. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor[J]. Optics Express, 2010, 18(15): 15448-15460.
[71] Jesacher A, Schwaighofer A, Fürhapter S, et al. Wavefront correction of spatial light modulators using an optical vortex image[J]. Optics Express, 2007, 15(9): 5801-5808.
[72] Liu Yidong, Gao Chunqing, Qi Xiaoqing et al. Orbital angular momentum (OAM) spectrum correction in free space optical communication[J]. Optics Express, 2008, 16(10): 7091-7101.
[73] Zhao S M, Leach J, Gong L Y, et al. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states[J]. Optics Express, 2012, 20(1): 452-461.
[74] Frenger P, Orten P, Ottosson T. Convolutional codes with optimum distance spectrum[J]. IEEE Communications Letters, 1999, 3(11): 317-319.
[75] Hanzo L L, Liew T H, Yeap B L, et al. Turbo coding, turbo equalisation and space-time coding: EXIT-chart-aided near-capacity designs for wireless channels[M]. Hoboken(USA): Wiley IEEE Press, 2011.
[76] Heisenberg W. The physical principles of the quantum theory[M]. New York (USA): Courier Dover Publications, 2013.
[77] Yao E, Franke-Arnold S, Courtial J, et al. Fourier relationship between angular position and optical orbital angular momentum[J]. Optics Express, 2006, 14(20): 9071-9076.
[78] Jack B, Aursand P, Franke-Arnold S, et al. Demonstration of the angular uncertainty principle for single photons[J]. Journal of Optics, 2011, 13(6): 064017-1-064017-6.
[79] Leach J, Jack B, Romero J, et al. Quantum correlations in optical angle-orbital angular momentum variables[J]. Science, 2010, 329(5992): 662-665.
[80] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34(16): 2525-2527.
[81] Bozinovic N, Kristensen P, Ramachandran S. Long-range fiber-transmission of photons with orbital angular momentum[C]//CLEO: Science and Innovations. Baltimore(USA): Optical Society of America, 2011: CTuB1-1- CTuB1-2.
[82] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.
[83] Thidé B, Then H, Sjholm J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701-1-087701-4.
[84] Committee on Harnessing Light. Optics and photonics: essential technologies for our nation[M]. Washington D C: National Academies Press, 2012.

备注/Memo

备注/Memo:
Received:2014-04-20;Accepted:2014-05-23
Foundation:National Natural Science Foundation of China (61036013, 61138003)
Corresponding author:Professor Yuan Xiaocong. E-mail: xcyuan@szu.edu.cn
Citation:Yuan Xiaocong, Jia Ping, Lei Ting, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4):331-346.(in Chinese)
基金项目:国家自然科学基金资助项目(61036013,61138003)
作者简介:袁小聪(1963—),男(汉族),上海市人,深圳大学特聘教授、长江学者. E-mail: xcyuan@szu.edu.cn
引文:袁小聪,贾平, 雷霆,等. 光学旋涡与轨道角动量光通信[J]. 深圳大学学报理工版,2014,31(4):331-346.
更新日期/Last Update: 2014-06-25