参考文献/References:
[1] Pismen L M. Vortices in nonlinear fields[M]. Oxford(UK): Oxford Science Publications,1999: 101-123.
[2] Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society A, 1974, 336(1605): 165-190.
[3] Allen L, Padgett M, Babiker M. The orbital angular momentum of light[J]. Progress in Optics, 1999, 39: 291-372.
[4] Allen L, Barnett S M, Padgett M J. Optical angular momentum[M]. London: Institute of Physics Publishing, 2003.
[5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.
[6] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844):313-316.
[7] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.
[8] Siegman A E. Lasers[M]. Sausalito(USA): University Science Books, 1986.
[9] Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum[J]. Physical Review Letters, 2002, 88(1): 013601-1-013601-4.
[10] Gibson G, Courtial J, Padgett M J. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.
[11] Gibson G, Courtial J, Vasnetsov M, et al. Increasing the data density of free-space optical communications using orbital angular momentum[J]. Proceedings of SPIE, 2004, 5550: 367-373.
[12] Bouchal Z, Celechovsk R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131-1-131-15.
[13] Beijersbergen M W, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phase plate[J]. Optics Communications, 1994, 112(5/6): 321-327.
[14] Kolobov M I. Quantum imaging[M]. New York(USA): Springer, 2007.
[15] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.
[16] Durnin J, Miceli J J Jr, Eberly J. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.
[17] Gutierrez-Vega J, Iturbe-Castillo M, Chavez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.
[18] Gonzalez N, Molina-Terriza G, Torres J. How a Dove prism transforms the orbital angular momentum of a light beam[J]. Optics Express, 2006, 14(20): 9093-9102.
[19] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.
[20] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905-1-163905-4.
[21] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.
[22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[23] Basistiy I V, Bazhenov V Y, Soskin M S, et al. Optics of light beams with screw dislocations[J]. Optics Communications, 1993, 103(5): 422-428.
[24] Harris M, Hill C A, Tapster P R, et al. Laser modes with helical wave fronts[J]. Physical Review A, 1994, 49(4): 3119-3122.
[25] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4075.
[26] Courtial J, Robertson D A, Dholakia K, et al. Rotational frequency shift of a light beam[J]. Physical Review Letters, 1998, 81(22): 4828-4830.
[27] Basistiy I V, Slyusar V V, Soskin M S, et al. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam[J]. Optics Letters, 2003, 28(14): 1185-1187.
[28] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25): 257901-1-257901-4.
[29] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon[J]. Physical Review Letters, 2004, 92(1): 013601-1-013601-4.
[30] Guo Chengshan, Yue ShuJuan, Wei Gongxing. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23): 231104-1-231104-3.
[31] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601-1-153601-4.
[32] Lavery M P J, Berkhout G C G, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation[J]. Journal of Optics, 2011, 13(6): 064006-1-064006-4.
[33] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 2012, 20(3): 2110-2115.
[34] Lavery M P J, Robertson D J, Sponselli A, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states[J]. New Journal of Physics, 2013, 15(1): 013024-1-013024-7.
[35] Chen Jun, Zhao Xing, Fang Zhiliang, et al. Modified optical vortices for encoding topological charges with principal-sidelobe ring relationships[J]. Optics Letters, 2010, 35(9): 1485-1487.
[36] Guo Chengshan, Liu Xuan, He Jingliang, et al. Optimal annulus structures of optical vortices[J]. Optics Express, 2004, 12(19): 4625-4634.
[37] Jia P, Yang Y, Min C J, et al. Sidelobe-modulated optical vortices for free-space communication[J]. Optics Letters, 2013, 38(4): 588-590.
[38] Liu Max Ming Kang. Principles and applications of optical communications[M]. Chicago(USA): Irwin, 1996.
[39] Proakis J G. Digital communication[M]. New York (USA): McGraw-Hill, 2000.
[40] Liu Yidong, Gao Chunqing, Gao Mingwei, et al. Superposition and detection of two helical beams for optical orbital angular momentum communication[J]. Optics Communications, 2008, 281(14): 3636-3639.
[41] Lin J, Yuan X C, Tao S H, et al. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states[J]. Applied Optics, 2007, 46(21): 4680-4685.
[42] Wang Z X, Zhang N, Yuan X C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication[J]. Optics Express, 2011, 19(2): 482-492.
[43] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 2010, 35(20): 3495-3497.
[44] Zhang N, Davis J A, Moreno I, et al. Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating[J]. Optics Express, 2010, 18(25): 25987-25992.
[45] Lin J, Yuan X C, Tao S H, et al. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element[J]. Optics Letters, 2005, 30(24): 3266-3268.
[46] Lin J, Yuan X C, Tao S. Orbital angular momentum (OAM) multiplexing in free-space optical data transfer[J]. Proceeding of SPIE, 2006, 6304: 630411-1-630411-5.
[47] elechovsk R, Bouchal Z. Optical implementation of the vortex information channel[J]. New Journal of Physics, 2007, 9(9): 328-1-328-12.
[48] Djordjevic I B. Deep-space and near-earth optical communications by coded orbital angular momentum (OAM) modulation[J]. Optics Express, 2011, 19(15): 14277-14289.
[49] Djordjevic I B, Denic S, Anguita J, et al. LDPC-coded MIMO optical communication over the atmospheric turbulence channel[J]. Journal of Lightwave Technology, 2008, 26(5): 478-487.
[50] Djordjevic I B, Arabaci M. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Optics Express, 2010, 18(24): 24722-24728.
[51] Martelli P, Gatto A, Boffi P, et al. Free-space optical transmission with orbital angular momentum division multiplexing[J]. Electronics Letters, 2011, 47(17): 972-973.
[52] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.
[53] Wang J, Yang J Y, Fazal I, et al. Experimental demonstration of 100-Gbit/s DQPSK data exchange between orbital-angular-momentum modes[C]// International Conference on Optical Fiber Communication. Los Angeles(USA):Optical Society of America, 2012: OW1I. 5-1- OW1I. 5-3.
[54] Fazal I M, Wang J, Yang J Y, et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM[C]// International Conference on Frontiers in Optics. San Jose(USA):Optical Society of America, 2011: FTuT1-1- FTuT1-2.
[55] McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam[J]. Applied Optics, 1998, 37(3): 469-472.
[56] Volpe G, Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams[J]. Optics Communications, 2004, 237(1): 89-95.
[57] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber[J]. Physical Review Letters, 2006, 96(4): 043604-1-043604-4.
[58] Franke-Arnold S, Barnett S M, Yao E, et al. Uncertainty principle for angular position and angular momentum[J]. New Journal of Physics, 2004, 6(1): 103-1-103-8.
[59] elechovsk R, Bouchal Z. Generation of variable mixed vortex fields by a single static hologram[J]. Journal of Modern Optics, 2006, 53(4): 473-480.
[60] Djordjevic I B, Cvijetic M, Xu L, et al. Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation[J]. IEEE Photonics Technology Letters , 2007, 19(12): 874-876.
[61] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901-1-153901-4.
[62] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of Optical Society of America A, 2008, 25(1): 225-230.
[63] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414-2429.
[64] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142-144.
[65] Malik M, O’ Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195-13200.
[66] Nauerth S, Moll F, Rau M, et al. Air-to-ground quantum communication[J]. Nature Photonics, 2013, 7(5): 382-386.
[67] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.
[68] Tyson R. Principles of adaptive optics[M]. Oxford(UK): CRC Press, 2010.
[69] Platt B C. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
[70] Murphy K, Burke D, Devaney N, et al. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor[J]. Optics Express, 2010, 18(15): 15448-15460.
[71] Jesacher A, Schwaighofer A, Fürhapter S, et al. Wavefront correction of spatial light modulators using an optical vortex image[J]. Optics Express, 2007, 15(9): 5801-5808.
[72] Liu Yidong, Gao Chunqing, Qi Xiaoqing et al. Orbital angular momentum (OAM) spectrum correction in free space optical communication[J]. Optics Express, 2008, 16(10): 7091-7101.
[73] Zhao S M, Leach J, Gong L Y, et al. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states[J]. Optics Express, 2012, 20(1): 452-461.
[74] Frenger P, Orten P, Ottosson T. Convolutional codes with optimum distance spectrum[J]. IEEE Communications Letters, 1999, 3(11): 317-319.
[75] Hanzo L L, Liew T H, Yeap B L, et al. Turbo coding, turbo equalisation and space-time coding: EXIT-chart-aided near-capacity designs for wireless channels[M]. Hoboken(USA): Wiley IEEE Press, 2011.
[76] Heisenberg W. The physical principles of the quantum theory[M]. New York (USA): Courier Dover Publications, 2013.
[77] Yao E, Franke-Arnold S, Courtial J, et al. Fourier relationship between angular position and optical orbital angular momentum[J]. Optics Express, 2006, 14(20): 9071-9076.
[78] Jack B, Aursand P, Franke-Arnold S, et al. Demonstration of the angular uncertainty principle for single photons[J]. Journal of Optics, 2011, 13(6): 064017-1-064017-6.
[79] Leach J, Jack B, Romero J, et al. Quantum correlations in optical angle-orbital angular momentum variables[J]. Science, 2010, 329(5992): 662-665.
[80] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34(16): 2525-2527.
[81] Bozinovic N, Kristensen P, Ramachandran S. Long-range fiber-transmission of photons with orbital angular momentum[C]//CLEO: Science and Innovations. Baltimore(USA): Optical Society of America, 2011: CTuB1-1- CTuB1-2.
[82] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.
[83] Thidé B, Then H, Sjholm J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701-1-087701-4.
[84] Committee on Harnessing Light. Optics and photonics: essential technologies for our nation[M]. Washington D C: National Academies Press, 2012.