[1]门锟,吴超,涂亮,等.互联电网功率振荡辨识方法应用研究[J].深圳大学学报理工版,2014,31(3):299-306.[doi:10.3724/SP.J.1249.2014.03299]
 Men Kun,Wu Chao,Tu Liang,et al.Applicability analysis of algorithms for electromechanical mode identification based on measured data[J].Journal of Shenzhen University Science and Engineering,2014,31(3):299-306.[doi:10.3724/SP.J.1249.2014.03299]
点击复制

互联电网功率振荡辨识方法应用研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第3期
页码:
299-306
栏目:
自控精仪
出版日期:
2014-05-20

文章信息/Info

Title:
Applicability analysis of algorithms for electromechanical mode identification based on measured data
文章编号:
20140313
作者:
门锟1吴超2涂亮1陆超3
1) 南方电网科学研究院有限责任公司,广州 510080
2) 深圳大学机电与控制学院,深圳 518060
3) 清华大学电机工程与应用电子技术系,北京100084
Author(s):
Men Kun1Wu Chao2Tu Liang1and Lu Chao3
1) Electric Power Research Institute of China South Power Grid, Guangzhou 510080, P.R.China
2) College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P.R.China
3) Department of Electrical Engineering, Tsinghua University, Beijing 100084, P.R.China
关键词:
电气工程功率振荡互联电网Prony法自回归滑动平均法随机子空间法
Keywords:
electrical engineering power oscillation interconnected power grid Prony method autoregressive moving average method stochastic subspace method
分类号:
TM 711
DOI:
10.3724/SP.J.1249.2014.03299
文献标志码:
A
摘要:
为应对中国大规模互联电网的功率振荡问题, 讨论Prony法、 自回归滑动平均法和随机子空间法的应用性. 分别以两区四机系统和EPRI-36节点系统等不同规模的典型仿真系统为例, 将上述方法用于明显扰动系统响应和随机扰动系统响应等典型信号的分析,提取系统振荡特征信息, 比较不同方法的应用性能, 研究存在外部测量干扰时方法的使用效果, 得到各种辨识方法在实际电网中应用性的一般结论.
Abstract:
In response to the power oscillation issue of China’s interconnected power grids, the applicability of the Prony method, the autoregressive moving average method and the stochastic subspace method are systematically discussed in this paper. Based on the review of their elementary principles, with the two-area four-machine system and the 36-node benchmark system as examples, these methods are used to estimate the oscillation information from ringdown data and ambient data respectively. Moreover, the influence of external measurement disturbances is also considered. Finally some general conclusions about the applicability of these methods in actual power grids are drawn from the simulation cases.

参考文献/References:

[1] Yu Yixin, Luan Wenpeng. Smart grid[J]. Power System and Clean Energy, 2009, 25(1):7-11.(in Chinese)
余贻鑫,栾文鹏.智能电网[J].电网与清洁能源, 2009, 25(1): 7-11.
[2] Xiao Shijie. Consideration of technology for constructing Chinese smart grid[J]. Automation of Electric Power Systems, 2009, 33(9): 1-4.(in Chinese)
肖世杰. 构建中国智能电网技术思考[J]. 电力系统自动化, 2009, 33(9): 1-4.
[3] Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang. Review and prospect for power system development and related technologies: a concept of three-generation power systems[J]. Proceedings of the CSEE, 2013, 33(22): 1-11.(in Chinese)
周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望——试论三代电网[J]. 中国电机工程学报, 2013, 33(22): 1-11.
[4] Kunder P. Power system stability and control[M]. New York(USA): McGraw-Hill Incorporated, 1994.
[5] Ni Yixin, Chen Shousun, Zhang Baolin. Dynamic power system theory and analysis[M]. Beijing: Tsinghua University Press, 2002.(in Chinese)
倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.
[6] Hauer J F, Demeure C J, Scharf L L. Initial results in prony analysis of power response signals[J]. IEEE Transactions on Power Systems, 1990, 5(1): 80-89.
[7] Xiao Jingyu, Xie Xiaorong, Hu Zhixiang, et al. Improved Prony method for online identification of low-frequency oscillations in power systems[J]. Journal of Tsinghua University Science and Technology, 2004, 44(7): 883-887.(in Chinese)
肖晋宇,谢小荣,胡志祥,等. 电力系统低频振荡在线辨识的改进Prony算法[J]. 清华大学学报自然科学版, 2004, 44(7): 883-887.
[8] Wu Chao, Cao Guangzhong. Low frequency oscillation ambient signals identification based on random decrement technique and Prony method[J]. Automation of Electric Power Systems, 2013, 37(8): 53-58.(in Chinese)
吴超, 曹广忠. 基于随机减量技术和Prony方法的低频振荡类噪声辨识[J]. 电力系统自动化, 2013, 37(8): 53-58.
[9] Pierre J W, Trudnowski D J, Donnelly M K. Initial results in electromechanical mode identification from ambient data[J]. IEEE Transactions on Power Systems, 2001, 12(3): 1245-1251.
[10] Wies R W, Pierre J W, Trundnowski D J. Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems[J]. IEEE Transactions on Power Systems, 2003, 18(1): 167-173.
[11] Wu Chao, Lu Chao, Wang Tian, et al. Ambient signals based power system oscillation modes identification considering model order selection[C]//Proceedings of Power & Energy Society General Meeting. Calgary (Canada): IEEE Press, 2009: 1-7.
[12] Kamwa I, Trudel G, Gerin-Lajoie L. Low-order black-box models for control system design in large power systems[J]. IEEE Transactions on Power Systems, 1996, 11(1): 303-311.
[13] Ni Jingmin, Shen Chen, Liu Feng. Estimation of the electromechanical characteristics of power systems based on a revised stochastic subspace method and the stabilization diagram[J]. Scientia Sinica (Technologica), 2012, 42(6): 687-696.(in Chinese)
倪敬敏, 沈沉, 刘锋. 基于改进随机子空间法和稳定图技术的电力系统低频机电振荡特征识别[J]. 中国科学: 技术科学, 2012, 42(6): 687-696.
[14] Sanchez-Gasca J J, Chow J H. Performance comparison of three identification methods for the analysis of electromechanical oscillations[J]. IEEE Transactions on Power Systems, 1999, 14(3): 995-1001.
[15] Trudnowski D, Pierre J W, Zhou N, et al. Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment[J]. IEEE Transactions on Power Systems, 2008, 23(2): 680-690.
[16] Wu Chao, Lu Chao, Han Yingduo, et al. Comparison of applicability in low frequency oscillation mode identification between Prony and ARMA[J]. Electric Power Automation Equipment, 2010, 30(3):30-34.(in Chinese)
吴超,陆超,韩英铎,等. Prony 方法和ARMA 法在低频振荡模式辨识中的适用性比较[J]. 电力自动化设备, 2010, 30(3): 30-34.
[17] Li Chengxin, Liu Junyong, Wang Ying. Comparative study of Prony and HHT applicability in low frequency oscillation parameter extraction[J]. East China Electric Power, 2012, 40(10): 1719-1723.(in Chinese)
李成鑫,刘俊勇,汪颖. Prony 和HHT 在低频振荡参数提取中的比较研究[J]. 华东电力, 2012, 40(10): 1719-1723.
[18] Scharf L. Statistical signal processing: detection, estimation, and time series analysis[M]. New York(USA): Addison-Wesley Publishing Company, 1991.
[19] Box G E P, M. Jenkins G, Reinsel G C. Time series-forecasting and controls[M]. Hoboken(USA): John Wiley Press, 2008.
[20] Tohru Katayama. Subspace methods for system identification[M]. Hoboken(USA): John Wiley Press, 2008.
[21] P van Overschee, B De Moor. Subspace identification for linear systems: theory, implementation, applications[M]. Dordrecht(Netherlands): Kluwer Academic Publishers, 1996.
[22] Wu Zhongxi, Zhou Xiaoxin. Power system analysis software package (PSASP)-an integrated power system analysis tool[C]//Proceedings of Power System Technology. Beijing: IEEE Press, 1998(1): 7-11.

备注/Memo

备注/Memo:
Received:2014-01-22;Accepted:2014-04-10
Foundation:National High Technology Research and Development Program of China (2012AA050209)
Corresponding author:Associate professor Wu Chao. E-mail: wuchao@szu.edu.cn
Citation:Men Kun, Wu Chao, Tu Liang, et al. Applicability analysis of algorithms for electromechanical mode identification based on measured data[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(3): 299-306.(in Chinese)
基金项目:国家高技术研究发展计划资助项目(2012AA050209)
作者简介:门锟(1975—),男(汉族),陕西省西安市人,南方电网科学研究院有限责任公司高级工程师、博士. E-mail: menkun@csg.cn
引文:门锟,吴超,涂亮, 等. 互联电网功率振荡辨识方法应用研究[J]. 深圳大学学报理工版,2014,31(3):299-306.
更新日期/Last Update: 2014-05-02