[1]李均钦,汪彩艳,逯正旺,等.高性能Ge0.75Pb0.25Te0.5Se0.5固溶体热电材料[J].深圳大学学报理工版,2014,31(3):221-226.[doi:10.3724/SP.J.1249.2014.03221]
 Li Junqin,Wang Caiyan,Lu Zhengwang,et al.High performance in Ge0.75Pb0.25Te0.5Se0.5 solid solution thermoelectric material[J].Journal of Shenzhen University Science and Engineering,2014,31(3):221-226.[doi:10.3724/SP.J.1249.2014.03221]
点击复制

高性能Ge0.75Pb0.25Te0.5Se0.5固溶体热电材料()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第3期
页码:
221-226
栏目:
材料科学
出版日期:
2014-05-20

文章信息/Info

Title:
High performance in Ge0.75Pb0.25Te0.5Se0.5 solid solution thermoelectric material
文章编号:
201403001
作者:
李均钦汪彩艳逯正旺李海涛刘福生敖伟琴
深圳大学材料学院,深圳市特种功能材料重点实验室,深圳 518060
Author(s):
Li Junqin Wang Caiyan Lu Zhengwang Li Haitao Liu Fusheng and Ao Weiqin
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
热电材料GeTe基合金Pb掺杂Se掺杂热电性能固溶体
Keywords:
thermoelectric material GeTe-based alloy Pb doping Se doping thermoelectric property solid solution
分类号:
TB 34
DOI:
10.3724/SP.J.1249.2014.03221
文献标志码:
A
摘要:
采用熔炼-淬火-高能球磨-放电等离子体烧结工艺,制备GeTe-PbTe合金Ge0.75Pb0.25Te及Se替代合金Ge0.75Pb0.25Te0.5Se0.5,研究和比较它们的物相、微结构及热电性能. 结果表明:母合金Ge0.75Pb0.25Te由分别以GeTe和PbTe为基的两相组成, 具有调幅分解组织,而Se替代合金Ge0.75Pb0.25Te中50%Te的合金变成以GeTe为基的单一固溶体,且存在大量的较小孪晶组织,两种合金都表现为p型半导体导电特性,固溶的Pb和Se原子改善了化合物的载流子浓度及能带结构,导致合金的Seebeck系数大幅度增加,固溶的Se及Pb原子、孪晶组织和晶界形成多尺度的声子散射中心,导致合金具有极低的热导率,热电优值ZT大幅度提高,673 K下,从Ge0.75Pb0.25Te的0.45提高到Ge0.75Pb0.25Te0.5Se0.5的1.6.
Abstract:
The alloy Ge0.75Pb0.25Te and its Se substitution alloy Ge0.75Pb0.25Te0.5Se0.5 were prepared by reaction melting, quenching, high-energy ball milling and spark plasma sintering techniques. The phases, microstructures and thermoelectric properties for both alloys were investigated. Experimental results show that the alloy Ge0.75Pb0.25Te consists of both GeTe-based and PbTe-based phases with spinodal decomposition microstructures while the Se substitution alloy Ge0.75Pb0.25Te0.5Se0.5 is of the GeTe-based solid solution single phase with a lot of twinning microstructures. The alloys show a nature of p-type conduction. The solute Pb and Se atoms in the lattice modify the band structure of the compounds, leading to a considerable increase in Seebeck coefficient. The solute Pb and Se atoms, twinning microstructures and grain boundaries form panoscopic phonon scattering centers, result in an extremely low thermal conductivity of the alloy and a dramatic increase of its figure of merit ZT from 0.45 for the alloy Ge0.75Pb0.25Te to 1.6 for the alloy Ge0.75Pb0.25Te0.5Se0.5 at 673 K.

参考文献/References:

[1] Bell L E. Cooling,heating,generating power,and recovering waste heat with thermoelectric systems[J]. Science,2008, 321(5895):1457-1461.
[2] Xu L Q,Wang H Q,Zheng J C. Thermoelectric properties of PbTe, SnTe, and GeTe at high pressure: an Ab initio study[J]. Journal of Electronic Materials,2011,40(5): 641-647.
[3] Gelbstein Y,Ben-Yehuda O,Pinhas E,et al. Thermoelectric properties of (Pb, Sn, Ge)Te-based alloys[J]. Journal of Electronic Materials,2009,38(7):1478-1482.
[4] Cook B A, Krame M Jr, Wei X,et al. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material[J]. Journal of Applied Physics,2007,101(5):053715-1-053715-6.
[5] Snyder G J,Toberer E S.Complex thermoelectric materials [J]. Nature Materials, 2008,7(2):105-114.
[6] He J Q,Kanatzidis M G,Dravid V P. High performance bulk thermoelectrics via a anoscopic approach[J]. Materials Today,2013,16(5):166-176.
[7] Heremans J P,Jovovic V,Toberer E S,et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science,2008,321(5888):554-557.
[8] Pei Y Z, Shi X Y, LaLonde A,et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature,2011,473(7345):66-69.
[9] Hsu K F,Loo S,Guo F,et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit[J].Science,2004,303(5659):818-821.
[10] Salvador J R,Yang J,Shi X,et al. Transport and mechanical property evaluation of (AgSbTe)1-x(GeTe)x(x= 0.80, 0.82, 0.85, 0.87, 0.90) [J]. Journal of Solid State Chemistry, 2009,182(8):2088-2095.
[11] Androulakis J,Lin C H,Kong H J,et al. Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe-PbS[J].Journal of The American Chemical Society, 2007,129(31):9780-9788.
[12] Dressethaus M S,Chen G,Tang M Y,et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials,2007,19(8):1043-1053.
[13] Ohta M, Biswas K, Lo S H,et al. Enhancement of thermoelectric figure of merit by the insertion of MgTe nanostructures in p-type PbTe doped with Na2Te[J]. Advanced Energy Materials,2012,2(9):1117-1123.
[14] Biswas K, He J Q, Wang G Y, et al, High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M=Ca, Ba)[J]. Energy & Environmental Science, 2011,4(11):4675-4684.
[15] Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature,2012,489(7416):414-418.
[16] Lo S H, He J Q, Biswas K, et al. Phonon scattering and thermal conductivity in p-type nanostructured PbTe-BaTe bulk thermoelectric materials[J]. Advanced Functional Materials,2012,22(24):5175-5184.
[17] Zhao L D, Wu H J, Hao S Q,et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance[J]. Energy & Environmental Science, 2013,6(11):3346-3355.
[18] He J, Sootsman J R, Girard S N, et al. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials[J]. Journal of The American Chemical Society, 2010, 132(25):8669-8675.
[19] He J, Gueguen A, Sootsman J R, et al. Role of self-organization, nanostructuring and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials[J]. Journal of The American Chemical Society, 2009, 131(49): 17828-17835.
[20] Ramachandrarao S P, Misra S, Anantharaman T R. Thermodynamic and constitutional studies of the PbTe-GeTe system[J]. Journal of Materials Science,1975, 10(11):1849-1855.
[21] Pei Y L, Liu Y. Electrical and thermal transport properties of Pb-based chalcogenides:PbTe, PbSe, and PbS[J]. Journal of Alloys and Compounds,2012,514:40-44.
[22] Bulusu A, Walker D G. Review of electronic transport models for thermoelectric materials[J]. Superlattices and Microstructures,2008,44(1): 1-36.
[23] Gelbstein Y, Yehuda O B, Pinhas E, et al. Thermoelectric properties of (Pb,Sn,Ge) Te-based alloys[J]. Journal of Electronic Materials,2009,38(7): 1478-1482.

相似文献/References:

[1]敖伟琴,刘福生,李均钦,等.纳米AgPb18SbTe20热电材料的合成[J].深圳大学学报理工版,2009,26(4):366.
 AO Wei-qin,LIU Fu-sheng,LI Jun-qin,et al.Nano-AgPb18SbTe20 synthesized by hydrothermal method[J].Journal of Shenzhen University Science and Engineering,2009,26(3):366.
[2]龚晓钟,田鹏,周智,等.稀土填充热电材料CoSb3Smx和CoSb3Prx的制备及表征[J].深圳大学学报理工版,2010,27(2):217.
 GONG Xiao-zhong,TIAN Peng,ZHOU Zhi,et al.Electrodeposition and characterization of rare-earth element filled thermoelectric material CoSb3Smx and CoSb3Prx[J].Journal of Shenzhen University Science and Engineering,2010,27(3):217.
[3]范平,郑壮豪,梁广兴,等.离子束溅射制备Bi2Te3热电薄膜[J].深圳大学学报理工版,2011,28(No.1(001-095)):84.
 FAN Ping,ZHENG Zhuang-hao,LIANG Guang-xing,et al.Preparation of Bi2Te3 thermoelectric thin films by ion beam sputtering[J].Journal of Shenzhen University Science and Engineering,2011,28(3):84.
[4]吕维忠,李金玉,黄旭珊,等.水热法合成PbTe微晶及其微观形貌表征[J].深圳大学学报理工版,2011,28(No.2(095-188)):178.
 LU Wei-zhong,LI Jin-yu,HUAGN Xu-shan,et al.Preparation and morphology characteristics of PbTe microcrystalline synthesized by hydrothermal method[J].Journal of Shenzhen University Science and Engineering,2011,28(3):178.

备注/Memo

备注/Memo:
Received:2014-03-06;Accepted:2014-04-15
Foundation:National Natural Science Foundation of China (51171117)
Corresponding author:Professor Li Junqin.E-mail: junqinli@szu.edu.cn
Citation:Li Junqin, Wang Caiyan, Lu Zhengwang, et al.High performance in Ge0.75Pb0.25Te0.5Se0.5 solid solution thermoelectric material[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(3): 221-226.(in Chinese)
基金项目:国家自然科学基金资助项目(51171117)
作者简介:李均钦(1961—),男(汉族),广西壮族自治区桂平市人,深圳大学教授. E-mail: junqinli@szu.edu.cn
引文:李均钦,汪彩艳,逯正旺,等. 高性能Ge0.75Pb0.25Te0.5Se0.5固溶体热电材料[J]. 深圳大学学报理工版,2014,31(3):221-226.
更新日期/Last Update: 2014-05-04