[1]刘长蕊,许新统,张莹莹,等.低损耗Topas环烯烃共聚物光纤研究[J].深圳大学学报理工版,2014,31(2):164-168.[doi:10.3724/SP.J.1249.2014.02164]
 Liu Changrui,Xu Xintong,Zhang Yingying,et al.Research on the low-loss Topas cyclic olefin copolymer fiber[J].Journal of Shenzhen University Science and Engineering,2014,31(2):164-168.[doi:10.3724/SP.J.1249.2014.02164]
点击复制

低损耗Topas环烯烃共聚物光纤研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第2期
页码:
164-168
栏目:
光电工程
出版日期:
2014-03-20

文章信息/Info

Title:
Research on the low-loss Topas cyclic olefin copolymer fiber
文章编号:
20140209
作者:
刘长蕊许新统张莹莹陈霖郑婉君杨西梁华伟阮双琛
深圳大学深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳518060
Author(s):
Liu Changrui Xu Xintong Zhang Yingying Chen Lin Zheng Wanjun Yang Xi Liang Huawei and Ruan Shuangchen
Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
微结构聚合物光纤连续太赫兹波Topas 环烯烃共聚物光纤太赫兹传输太赫兹成像约束损耗
Keywords:
microstructural polymer optical fiber continuous wave terahertz Topas cyclic olefin copolymer fiber terahertz transmission terahertz imaging confinement loss
分类号:
TN 214
DOI:
10.3724/SP.J.1249.2014.02164
文献标志码:
A
摘要:
以大直径空芯微结构Topas 环烯烃共聚物光纤为太赫兹波传输媒介,数值计算得其在1.89和2.52 THz处的限制损耗约为1.25和1.59 dB/m. 实验结果表明,该结构光纤能将1.89和2.52 THz的太赫兹波很好地限制在其空气芯中传输,存在较小的弯曲损耗,且1.89 THz处的约束损耗低于2.52 THz处,与计算结果吻合,并获得较好传输效果.
Abstract:
A large diameter hollow micro-structural Topas cyclic olefin copolymer (COC) fiber is selected for terahertz transmission. Numerical calculation of the confinement loss at 1.89 and 2.52 THz are about 1.25 and 1.59 dB/m, respectively. Experimental results show that this structural fiber can marvelously restrict 1.89 and 2.52 THz in the air inside of the fiber and exhibit relatively low bending loss. Furthermore, the fiber reveals better restriction property at 1.89 THz than that at 2.52 THz. In other words, the experimental results coincide with the result of theoretical calculation.

参考文献/References:

[1] Mukherjee P, Gupta B. Terahertz(THz) frequency sources and antennas-a brief review[J]. International Journal of Infrared and Millimeter Waves, 2008, 29(12): 1091-1102.
[2] Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[J]. Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182.
[3] Lu J T, Hsueh Y C, Huang Y R, et al. Bending loss of terahertz pipe waveguides[J]. Optics Express, 2010, 18(25): 26332-26338.
[4] Lai C H, You B, Lu J Y, et al. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding[J]. Optics Express, 2010, 18(1): 309-322.
[5] Mendis R, Grischkowsky D. Plastic ribbon THz waveguides[J]. Journal of Applied Physics, 2000, 88(7): 4449-4451.
[6] Jamison S P, McGowan R W, Grischkowsky D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers[J]. Applied Physics Letters, 2000, 76(15): 1987-1989.
[7] Quema A, Goto M, Sakai M, et al. Onset detection of solid-state phase transition in estrogen-like chemical via terahertz transmission spectroscopy[J]. Applied Physics Letters, 2004, 85(17): 3914-3916.
[8] Kim S H , Lee E S, Ji Y B, et al. Improvement of THz coupling using a tapered parallel-plate waveguide[J]. Optics Express, 2010, 18(2): 1289-1295.
[9] Zheng Z, Kanda N, Konishi K, et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires[J]. Optics Express, 2013, 21(9): 10642-10650.
[10] Pahlevaninezhad H, Darcie T E, Heshmat B. Two-wire waveguide for terahertz[J]. Optics Express, 2010, 18(7): 7415-7420.
[11] Mutter L, Jazbinsek M, Herzog C, et al. Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals[J]. Optics Express, 2008, 16(2): 731-739.
[12] Anthony J, Leonhardt R, Leon-Saval S G, et al. THz propagation in kagome hollow-core microstructured fibers[J]. Optics Express, 2011, 19(19): 18470-18478.
[13] Chen D, Chen H. A novel low-loss Terahertz waveguide: ploymer tube[J]. Optics Express, 2010, 18(4): 3762-3767.
[14] Liu Xiaoyi, Zhang Fangdi, Zhang Min, et al. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect[J]. Acta Physica Sinica, 2007, 56(1): 301-307.(in Chinese)
刘小毅, 张方迪, 张民, 等. 基于谐振吸收效应的单模单偏振光子晶体光纤研究[J]. 物理学报, 2007, 56(1): 301-307.
[15] Wang Jian, Lei Naiguang, Yu Chongxiu. Analysis of confinement loss in microstructured optical fibers with elliptical air holes[J]. Acta Physica Sinica, 2007, 56(2): 946-951.(in Chinese)
王健,雷乃光,余重秀. 椭圆空气孔微结构光纤限制损耗的分析[J]. 物理学报, 2007, 56(2): 946-951.
[16] Nunes P S, Ohlsson P D, Ordeig O,et al. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications[J]. Microfluidics and Nanofluidics, 2010, 9(2/3): 145-161.

相似文献/References:

[1]阮双琛,权润爱,张敏,等.反射式连续波太赫兹成像系统[J].深圳大学学报理工版,2010,27(1):6.
 RUAN Shuang-chen,QUAN Run-ai,ZHANG Min,et al.CW THz imaging constructions in reflection geometry[J].Journal of Shenzhen University Science and Engineering,2010,27(2):6.
[2]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(2):160.[doi:10.3724/SP.J.1249.2014.02160]

备注/Memo

备注/Memo:
Received:2013-09-12;Accepted:2013-11-20
Foundation:National Natural Science Foundation of China (61275144); Shenzhen Science and Technology Research Foundation for Basic Project(JC201105170626)
Corresponding author:Professor Ruan Shuangchen. E-mail: scruan@szu.edu.cn
Citation: Liu Changrui, Xu Xintong, Zhang Yingying, et al. Research on the low-loss Topas cyclic olefin copolymer fiber[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(2): 164-168.(in Chinese)
基金项目:国家自然科学基金资助项目(61275144);深圳市科技基础研究计划资助项目(JC201105170626)
作者简介:刘长蕊(1987-),女(汉族),辽宁省北票市人,深圳大学硕士研究生. E-mail:liuchangrui611@163.com
引文:刘长蕊,许新统,张莹莹,等. 低损耗Topas环烯烃共聚物光纤研究[J]. 深圳大学学报理工版,2014,31(2):164-168.
更新日期/Last Update: 2014-03-20