参考文献/References:
[1] Forster T, Kasper K. Ein konzentrationsumschlag der fluoreszenz[J]. Zeitschrift für Physikalische Chemie, 1954, 1(5/6): 275-277.
[2] Birks J B. Photophysics of Aromatic Molecules[M]. London: Wiley, 1970.
[3] Slav1′k J. Fluorescence Microscopy and Fluorescent Probes[M]. New York: Plenum, 1996.
[4] Valeur B. Molecular Fluorescence: Principle and Applications[M]. Weinheim(German): Wiley-VCH, 2002.
[5] Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transfer analysis:beyond traditional donor-acceptor combinations[J]. Angewandte Chemie International Edition, 2006, 45(28): 4562-4589.
[6] Borisov S M, Wolfbeis O S. Optical biosensors[J]. Chemical Society Reviews, 2008, 108(2): 423-461.
[7] Domaille D W, Que E L, Chang C J. Synthetic fluorescent sensors for studying the cell biology of metals[J] . Nature Chemical Biology, 2008, 4(3): 168-175.
[8] Lim M H, Lippard S J. Metal-based turn-on fluorescent probes for sensing nitric oxide[J]. Accounts of Chemical Research, 2007, 40(1): 41-51.
[9] Giepmans B N G, Adams S R, Ellisman M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312(5771): 217-224.
[10] Luo J, Xie Z, Lam J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communication, 2001(18): 1740-1741.
[11] Yan Jiming, Qin Anjun, Sun Jingzhi, et al. Application of AIE-active molecules in biosensing[J]. Chinese Sci Bull, 2010, 55(13): 1206-1213.(in Chinese)
闫继明,秦安军,孙景志,等. 聚集诱导发光分子在生物传感检测领域的应用[J]. 科学通报, 2010, 55(13): 1206-1213.
[12] Tong H, Dong Y. Color-tunable, aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings[J]. Journal of Physical Chemistry B, 2007, 111(8) : 2000-2007.
[13] Tong H, Dong Y, Hong Y N, et al. Aggregation-induced emission: effects of molecular structure, solid-state conformation, and morphological packing arrangement on light-emitting behaviors of diphenyldi-benzofulvene derivatives[J]. Journal of Physical Chemistry C, 2007, 111(5): 2287-2294.
[14] Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications[J]. Chemical Communication, 2009(29): 4332-4353.
[15] Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission[J]. Chemical Society Reviews, 2011, 40(11): 5361-5388.
[16] Zhang Shuang, Qin Anjun, Sun Jingzhi, et al. Mechanism study of agreegation-induced emission[J]. Progress in Chemistry, 2011, 23(4): 623-636.(in Chinese)
张双,秦安军,孙景志,等. 聚集诱导发光机理研究[J]. 化学进展, 2011, 23(4): 623-636.
[17] Yu G, Yin S W, Liu Y Q, et al. Structures, electronic states, photoluminescence, and carrier transport properties of 1, 1-disubstituted 2, 3, 4, 5-tetraphenylsiloles[J]. Journal of the American Chemical Society, 2005, 127(17): 6335-6346.
[18] Chen J W, Law C C W, Lam J W Y, et al. Synthesis, light emission, nanoaggregation,and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles[J]. Chemical Materials, 2003, 15(7): 1535-1546.
[19] Fan X, Sun J L, Wang F Z, et al. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state[J]. Chemical Communication, 2008(26): 2989-2991.
[20] Ren Y, Lam J W Y, Dong Y Q, et al. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates[J]. Journal of Physical Chemistry B, 2005, 109(3): 1135-1140.
[21] Ren Y, Lam J W Y, Dong Y Q, et al. Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique[J]. Chemical Physics Letters, 2005, 402(4): 468-473.
[22] Li Z, Dong Y Q, Mi B X, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials[J]. Journal of Physical Chemistry B, 2005, 109(20): 10061-10066.
[23] Wang M, Zhang G X, Zhang D Q, et al. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature[J]. Journal of Materials Chemistry, 2010, 20(10): 1858-1867.
[24] Zhang Yunsheng, Qing Jiuhong, Xu Caihong. Research progress of application of silole derivatives with aggregation-induced emission[J]. Silicone Material, 2011, 25(3): 190-198.(in Chinese)
张运生, 秦九红, 徐彩虹. 聚集诱导发光的硅杂环戊二烯衍生物的应用研究进展[J]. 有机硅材料, 2011, 25(3): 190-198.
[25] Zhao Yuezhi, Cai Minmin, Qian Yan, et al. The systems with aggregation induced emission: compounds, emission, mechanisms and their applications[J]. Progress in Chemistry, 化学进展,2013, 25(203): 296-321.(in Chinese)
赵跃智, 蔡敏敏, 钱妍, 等. 聚集诱导发光体系:化合物种类、发光机制及其应用[J]. 2013, 25(203): 296-321.
[26] Ma Qingyu, Guan Ruifang, Li Guozhong, et al. Progress in the synthesis and applications of silole compounds[J]. Chinese Journal of Organic Chemistry, 2011, 31(9): 1395-1405.(in Chinese)
马庆宇, 关瑞芳, 李国忠, 等. 硅杂环戊二烯的合成及应用进展[J]. 有机化学,2011, 31(9): 1395-1405.
[27] Xia Jing, Wu Yanmei, Zhang Yaling, et al. Recent progress of tetraphenylethenes with aggregation-induced emission[J]. Imaging Science and Photochemisty, 2012, 30(1): 9-25.(in Chinese)
夏晶,吴燕梅,张亚玲, 等. 具有聚集诱导发光特性的四苯基乙烯研究进展[J]. 影像科学与光化学, 2012, 30(1): 9-25.
[28] Zhao Guosheng, Shi Chuanxing, Guo Zhiqian, et al. Recent application progress on aggregation-induced emission[J]. Chinese Journal of Organic Chemistry, 2012, 32(9): 1620-1632.(in Chinese)
赵国生,史川兴,郭志前,等. 聚集诱导发光应用研究进展[J]. 有机化学,2012, 32(9): 1620-1632.
[29] Wang M, Zhang D, Zhang G, et al. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole[J]. Analytical Chemistry, 2008, 80(16): 6443-6448.
[30] Wang M, Zhang D, Zhang G, et al. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group[J]. Chemical Communication, 2008(37): 4469-4471.
[31] Zhao M, Wang M, Liu H, et al. Continuous on-site label-free ATP fluorometric assay based on aggregation-induced emission of silole[J]. Langmuir, 2009, 25(2): 676-678.
[32] Tong H, Hong Y N, Don Y Q, et al. Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics[J]. Chemical Communication, 2006(35) : 3705-3707.
[33] Tong H, Hong Y, Dong Y, et al. Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics[J]. Journal of Physical Chemistry B, 2007, 111(40): 11817-11823.
[34] Wang M,Gu X,Zhang G,et al.Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission[J]. Analytical Chemistry , 2009, 81(11): 4444-4449.
[35] Whitehouse P J, Price D L, Struble R G, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain[J]. Science, 1982, 215(4537): 1237-1239.
[36] Peng L, Zhang G, Zhang D Q, et al. A fluorescence “turn-on” ensemble for acetylcholinesterase activity assay and inhibitor screening[J]. Organic Letters, 2009, 11(17): 4014-4017.
[37] Hong Y N, Feng C, Yu Y, et al. Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics[J]. Analytical Chemistry, 2010, 82(16): 7035-7043.
[38] Xue W, Zhang G X, Zhang D Q, et al. A new fluorometric turn-on assay for trypsin and inhibitor screening with tetraphenylethene compounds[J]. Organic Letters, 2010, 12(10): 2274-2277.
[39] Hong Y N,Haussler M,Lam J W Y,et al.Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics[J]. Chemistry-A Europen Journal, 2008, 14(21): 6428-6437.
[40] Sun F, Zhang G X, Zhang D X, et al. Aqueous fluorescence turn-on sensor for Zn2+ with a tetraphenylethylene compound[J]. Organic Letters, 2011, 13(24): 6378-6381.
[41] Hong Y N, Chen S J, Liu J Z, et al. Fluorogenic Zn(II) and chromogenic Fe(II) sensors based on terpyridine-substituted tetraphenylethenes with aggregation-induced emission characteristics[J]. Applied Materials & Interfaces, 2011, 3(9): 3411-3418.
[42] Liu L, Zhang G X, Xiang J F, et al. Fluorescence “turn on” chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties[J]. Organic Letters, 2008, 10(20): 4581-4584.
[43] Peng L H, Wang M, Zhang G X, et al. A fluorescence turn-on detection of cyanide in aqueous solution based on the aggregation-induced emission[J]. Organic Letters, 2009, 11(9): 1943-1946.
[44] Toal S J, Jones K A, Magde D, et al. Luminescent silole nanoparticles as chemoselective sensors for Cr(VI)[J]. Journal of the American Chemical Society, 2005, 127(33): 11661-11665.
[45] Yuan W Z, Hu R R, Lam J W Y, et al. Conjugated hyperbranched poly(aryleneethynylene)s: synthesis, photophysical properties, superquenching by explosive, photopatternability, and tunable high refractive indices[J]. Chemistry-A Europen Journal, 2012, 18(10): 2847-2856.
[46] Hu R R, Lam J W Y, Liu J Z, et al. Hyperbranched conjugated poly(tetraphenylethene):synthesis,aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection[J]. Polymer Chemistry, 2012, 3(6): 1481-1489.
[47] Li H K, Wang J, Sun J Z, et al. Metal-free click polymerization of propiolates and azides: facile synthesis of functional poly(aroxycarbonyltriazole)s[J]. Polymer Chemistry, 2012, 3(4): 1075-1083.
[48] Qin A J, Tang L, Lam J W Y, et al. Metal-free click polymerization: synthesis and photonic properties of poly(aroyltriazole)s[J]. Advanced Functional Materials, 2009, 19(12): 1891-1900.
[49] Li D D, Liu J Z, Liang Z Q, et al. Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials[J]. Chemical Communication, 2012, 48(57): 7167-7169.
[50] Xu B W, Wu X F, Li H B, et al. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor acceptor architecture[J]. Macromolecules, 2011, 44(13): 5089-5092.
[51] Liu J Z, Zhong Y C, Lam J W Y, et al. Hyperbranched conjugated polysiloles: synthesis,structure,aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives[J]. Macromolecules, 2010, 43(11): 4921-4936.
[52] Qin A J, Lam J W Y, Tang L, et al. Polytriazoles with aggregation-induced emission characteristics: synthesis by click polymerization and application as explosive chemosensors[J]. Macromolecules, 2009, 42(5): 1421-1424.
[53] Yuan W Z, Zhao H, Shen Y, et al. Luminogenic polyacetylenes and conjugate polyelectrolytes: synthesis, hybridization with carbon nanotubes, aggregation-induced emission, superamplification in emission quenching by explosives, and fluorescent assay for protein quantitation[J]. Macromolecules, 2009, 42(24): 9400-9411.
[54] Li H K, Mei J, Wang J, et al. Facile synthesis of poly(aroxycarbonyltriazole)s with aggregation-induced emission characteristics by metal-free click polymerization[J]. Science China Chemistry, 2011, 54(4): 611-616.