[1]倪洁蕾,程亚.飞秒激光成丝若干新效应研究进展[J].深圳大学学报理工版,2014,31(1):1-15.[doi:10.3724/SP.J.1249.2014.01001]
 Ni Jielei and Cheng Ya.Several new phenomena in femtosecond laser filamentation[J].Journal of Shenzhen University Science and Engineering,2014,31(1):1-15.[doi:10.3724/SP.J.1249.2014.01001]
点击复制

飞秒激光成丝若干新效应研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第31卷
期数:
2014年第1期
页码:
1-15
栏目:
光电工程
出版日期:
2014-01-14

文章信息/Info

Title:
Several new phenomena in femtosecond laser filamentation
文章编号:
20140101
作者:
倪洁蕾程亚
中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室, 上海 201800
Author(s):
Ni Jielei and Cheng Ya
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P.R.China
关键词:
非线性光学飞秒激光成丝自聚焦高阶克尔效应远程空气激射时空聚焦整形
Keywords:
nonlinear optics femtosecond laser filamentation self-focusing higher-order Kerr effect remote air lasing spatial temporal shaping
分类号:
O 437.5
DOI:
10.3724/SP.J.1249.2014.01001
文献标志码:
A
摘要:
介绍飞秒激光成丝物理模型,重点结合本课题组近期研究发现,评述飞秒激光成丝研究在高阶克尔效应的验证、远程空气激光的发展以及时空聚焦技术在光丝远程操控等方面的最新进展.同时指出尽管飞秒激光成丝过程的基本物理图像已逐渐清晰,但此领域仍存在许多挑战,如成丝过程中高阶克尔效应不可忽略,促进现有的成丝基本模型进一步完善发展;飞秒激光成丝过程中产生的基于谐波种子放大的远程空气激射新现象,其产生机制尚不明确;在成丝操控方面,针对飞秒光丝形态及光丝中光场时空分布的有效调控,已成为当前研究热点.
Abstract:
Beginning with an introduction of the physical model of femtosecond laser filamentation widely accepted today, this paper reviews the latest advances we have achieved in the studies of femtosecond laser filamentation, including an experimental verification of higher-order Kerr effect, investigations of remote lasing generated in air, and development of sptiotemperal focusing technique for remote manipulation of femtosecond laser filament. Our findings point out that although a seemingly complete picture of the fundamental processes in the femtosecond laser filamentation has been established, there are still many challenging problems to be solved. For example, recent experiments show that a negative higher-order Kerr effect cannot be ignored during the filamentation, showing the incompleteness of the current understanding on the femtosecond laser filamentation; the physical mechanism of lasing action in air induced by femtosecond laser filamentation has been still unclear; and new methods for fully manipulating both the profiles of femtosecond laser filaments and the spatiotemporal properties of the light fields inside the filaments have yet to be developed. These facts conclude that this field is still full of opportunities for innovation.

参考文献/References:

[1] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75.
[2] Couairon A, Mysyrowicz A. Femtosecond filamention in transparent media [J]. Physics Reports, 2007, 441(2/3/4): 47-189.
[3] Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[J]. Canadian Journal of Physics, 2005, 83(9): 863-905.
[4] Bergé L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 2007, 70(10): 1633-1713.
[5] Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69(3): 036607-1-036607-7.
[6] Stelmaszczyk K, Rohwetter P, Mejean G, et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air[J]. Applied Physics Letters, 2004,85(18): 3977-3979.
[7] Chin S L, Petit S, Borne F, et al. The white light supercontinuum is indeed an ultrafast white light laser[J]. Japanese Journal of Applied Physics, 1999,38(2A): L126-L128.
[8] Faccio D, Trapani P D, Minardi S, et al. Far-field spectral characterization of conical emission and filamentation in Kerr media[J]. Journal of Optical Society of America B, 2005,22(4): 862-869.
[9] Tzortzakis S, Prade B, Franco M, et al. Femtosecond laser-guided electric discharge in air[J]. Physical Review E, 2001,64(5): 057401-1-057401-5.
[10] Forestier B, Houard A, Revel I, et al. Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament[J]. AIP Advances, 2012, 2(1): 012151-1-012151-13.
[11] Dogariu A, Michael J B, Scully M O, et al. High-gain backward lasing in air[J]. Science, 2011,331(6016): 442-445.
[12] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B, 2003,76(3): 337-340.
[13] Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003,301(5629): 61-64.
[14] Guandalini A, Eckle P, Anscombe M, et al. 5.1 fs pulses generated by filamentation and carrier envelope phase stability analysis[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(13): S257-S264.
[15] Ghotbi M, Trabs P, Beutler M. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon[J]. Optics Letters, 2011, 36(4): 463-465.
[16] Winterfeldt C, Spielmann C, Gerber G. Colloquium: optimal control of high-harmonic generation[J]. Reviews of Modern Physics, 2008, 80(1): 117-140.
[17] Zeng B, Chu W, Li G, et al. Direct generation of intense extreme-ultraviolet supercontinuum with 35-fs, 11-mJ pulses from a femtosecond laser amplifier[J]. Physical Review A,2012,85(3): 033839-1-033839-4.
[18] Steingrube D S, Schulz E, Binhammer T, et al. Generation of high-order harmonics with ultra-short pulses from filamentation[J]. Optics Express, 2009, 17(18): 16177-16182.
[19] Bertrand J B, Wrner H J, Salières P, et al. Linked attosecond phase interferometry for molecular frame measurements[J]. Nature Physics, 2013, 9: 174-178.
[20] Haessler S, Caillat J, Boutu W, et al. Attosecond imaging of molecular electronic wavepackets [J]. Nature Physics, 2010, 6: 200-206.
[21] Shafir D, Soifer H, Bruner B D, et al. Resolving the time when an electron exits a tunnelling barrier[J]. Nature, 2012, 485(7398): 343-346.
[22] Niikura H, Légaré F, Hasbani R, et al. Sub-laser-cycle electron pulses for probing molecular dynamics[J]. Nature, 2002, 417: 917-922.
[23] Stapelfeldt H, Seideman T. Colloquium: aligning molecules with strong laser pulses[J]. Reviews of Modern Physics, 2003, 75(2): 543-557.
[24] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4: 451-456.
[25] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letter, 1964, 13(15): 479-482.
[26] Kelley P L. Self-focusing of optical beams[J]. Physical Review Letter, 1965, 15(26): 1005-1008.
[27] Chin S L, Lambropoulos P. Multiphoton Ionization of Atoms[M]. Toronto(Canada): Academic, 1984.
[28] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 1965, 20(5): 1307-1314.
[29] Feit M D, Fleck J A. Effect of refraction on spot-size dependence of laser-induced breakdown[J]. Applied Physics Letters, 1974, 24(4): 169-172.
[30] Wang C, Fu Y, Zhou Z, et al. Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water[J]. Applied Physics Letters, 2007, 90(18): 181119-1-181119-3.
[31] Kartashov D, Aliauskas S, Puglys A, et al. White light generation over three octaves by femtosecond filament at 3.9 μm in argon[J]. Optics Letters, 2012, 37(16): 3456-3458.
[32] Liu W, Petit S, Becker A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 2002, 202(1/2/3): 189-197.
[33] Becker A, Akzbek N, Vijayalakshmi K, et al. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas[J]. Applied Physics B, 2001, 73(3): 287-290.
[34] Nibbering E T J, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters,1996,21(1): 62-64.
[35] Kosareva O G, Kandidov V P, Brodeur A, et al. Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(17): 1332-1334.
[36] Chin S L, Brodeur A, Petit S, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media[J]. Journal of Nonlinear Optical Physics & Materials, 1999, 8(1): 121-146.
[37] Loriot V, Hertz E, Faucher O, et al. Measurement of high order Kerr refractive index of major air components[J]. Optics Express, 2009, 17(16): 13429-13434.
[38] Loriot V, Hertz E, Faucher O, et al. Measurement of high order Kerr refractive index of major air components: erratum[J]. Optics Express, 2010, 18(3): 3011-3012.
[39] Yao J, Zeng B, Xu H, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 2011, 84(5): 051802-1-051802-5.
[40] Chu W, Zeng B, Yao J, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses[J]. Europhysics Letters, 2012, 97(6): 64004-p1-64004-p5.
[41] Ni J, Chu W, Zhang H, et al. Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study[J]. Optics Express, 2012, 20(19): 20970-20979.
[42] Yao J, Li G, Jing C, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New Journal Physics, 2013, 15: 023046-1-023046-10.
[43] Ni J, Chu W, Jing C, et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation[J]. Optics Express, 2013, 21(7): 8746-8752.
[44] Chin S L. Femtosecond Laser Filamentation[M]. New York: Springer Science+Business Media, 2010.
[45] Seideman T, Hamilton E. Nonadiabatic alignment by intense pulses. concepts, theory, and directions[J]. Advances In Atomic, Molecular, and Optical Physics, 2006, 52: 289-329.
[46] Poulsen M D, Péronne E, Stapelfeldt H, et al. Nonadiabatic alignment of asymmetric top molecules: Rotational revivals[J]. The Journal of Chemical Physics, 2004, 121(2): 783-791.
[47] Chen Y H, Varma S, York A, et al. Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O[J]. Optics Express, 2007, 15(18): 11341-11357.
[48] Calegari F, Vozzi C, Stagira S. Optical propagation in molecular gases undergoing filamentation-assisted field-free alignment[J]. Physical Review A, 2009, 79(2): 023827-1-023827-10.
[49] Varma S, Chen Y H, Milchberg H M. Quantum molecular lensing of femtosecond laser optical/plasma filaments[J]. Physics of Plasmas, 2009, 16: 056702-1-056702-6.
[50] Béjot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow lonization-free filamentation in gases[J]. Physical Review Letters, 2010, 104(10): 103903-1-103903-4.
[51] Kolesik M, Mirell D, Diels J C, et al. On the higher-order Kerr effect in femtosecond filaments[J]. Optics Letters, 2010, 35(21): 3685-3687.
[52] Kolesik M, Wright E M, Moloney J V. Femtosecond filamentation in air and higher-order nonlinearities[J]. Optics Letters, 2010, 35(15): 2550-2552.
[53] Morales F, Richter M, Patchkovskii S, et al. Imaging the Kramers-Henneberger atom[J]. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108(41): 16906-16911.
[54] Béjot P, Hertz E, Lavorel B, et al. From higher-order Kerr nonlinearities to quantitative modeling of third and fifth harmonic generation in argon[J]. Optics Letters, 2011, 36(6): 828-830.
[55] Béjot P, Kasparian J. Conical emission from laser filaments and higher-order Kerr effect in air[J]. Optics Letters, 2011, 36(24): 4812-4814.
[56] Brée C, Demircan A, Steinmeyer G. Saturation of the all-optical Kerr effect[J]. Physical Review Letters, 2011, 106(18): 183902-1-183902-4.
[57] Béjot P, Hertz E, Kasparian J, et al. Transition from Plasma-driven to Kerr-driven laser filamentation[J]. Physical Review Letters, 2011, 106(24): 243902-1-243902-4.
[58] Polynkin P, Kolesik M, Wright E M, et al. Experimental tests of the new paradigm for laser filamentation in gases[J]. Physical Review Letters, 2011, 106(15): 153902-1-153902-4.
[59] Kosareva O, Daigle J F, Panov N, et al. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing? [J]. Optics Letters, 2011, 36(7): 1035-1037.
[60] Brown J M, Wright E M, Moloney J V, et al. On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions[J]. Optics Letters, 2011, 37(10): 1604-1606.
[61] Wahlstrand J K, Cheng Y H, Chen Y H, et al. Optical nonlinearity in Ar and N2 near the ionization threshold[J]. Physical Review Letters, 2011, 107(10): 103901-1-103901-5.
[62] Wahlstrand J K, Milchberg H M. Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases[J]. Optics Letters, 2011, 36(19): 3822-3824.
[63] Odhner J H, Romanov D A, McCole E T, et al. Ionization-grating-induced nonlinear phase accumulation in spectrally resolved transient birefringence measurements at 400 nm[J]. Physical Review Letters, 2012, 109(6): 065003-1-065003-5.
[64] Ni J, Yao J, Zeng B, et al. Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses[J]. Physical Review A, 2011, 84(6): 063846-1-063846-4.
[65] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 2011, 11(1): 32-53.
[66] Xu H L, Daigle J F, Luo Q, et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane[J]. Applied Physics B, 2006, 82(4): 655-658.
[67] Xu H L, Kamali Y, Marceau C, et al. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy[J]. Applied Physics Letters, 2007, 90(10): 101106-1-101106-3.
[68] Luo Q, Xu H L, Hosseini S A, et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 2006, 82(1): 105-109.
[69] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 2006, 31(10): 1541-1542.
[70] Xu H L, Bernhardt J, Mathieu P, et al. Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets[J]. Journal of Applied Physics, 2007, 101(3): 033124-1-033124-6.
[71] Shneider M N, Baltuka A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization[J]. Journal of Applied Physics, 2011, 110(8): 083112-1-083112-7.
[72] Peano J, Sprangle P, Hafizi B, et al. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen[J]. Journal of Applied Physics, 2012, 111(3): 033105-1-033105-8.
[73] Hemmer P R, Miles R B, Polynkin P, et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam[J]. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108(8): 3130-3134.
[74] Fu Y, Xiong H, Xu H, et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 2009, 34(23): 3752-3754.
[75] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense airy beams[J]. Science, 2009, 324(5924): 229-232.
[76] Polynkin P, Kolesik M, Moloney J. Filamentation of femtosecond laser airy beams in water[J]. Physical Review Letters, 2009, 103(12): 123902-1-123902-4.
[77] Polesana P, Franco M, Couairon A, et al. Filamentation in Kerr media from pulsed Bessel beams[J]. Physical Review A, 2008, 77(4): 043814-1-043814-11.
[78] Neshev D N, Dreischuh A, Maleshkov G, et al. Supercontinuum generation with optical vortices[J]. Optics Express, 2010, 18(17): 18368-18373.
[79] Liu Y, Brelet Y, He Z, et al. Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics[J]. Physical Review Letters, 2013, 110(9): 097601-1-097601-5.
[80] Silva F, Austin D R, Thai A, et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal[J]. Nature Communications, 2012, 3: 807-1-807-5.
[81] Wang Z, Liu J, Li R, et al. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon[J]. Optics Letters, 2010, 35(2): 163-165.
[82] Théberge F, Liu W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing[J]. Physical Review E, 2006, 74(3): 036406-1-036406-7.
[83] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819-1-063819-7.
[84] Zhu G, Howe J, Durst M, et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 2005, 13(6): 2153-2159.
[85] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5): 1468-1476.
[86] Oron D, Silberberg Y. Harmonic generation with temporally focused ultrashort pulses[J]. Journal of the Optical Society of America B, 2005, 22(12): 2660-2663.

相似文献/References:

[1]郑国梁,欧阳征标,徐世祥.吸收对准相位匹配线性电光效应的影响[J].深圳大学学报理工版,2010,27(2):152.
 ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(1):152.
[2]夏林中,苏红,管明祥,等.温度调谐的周期极化掺氧化镁铌酸锂振荡器[J].深圳大学学报理工版,2011,28(No.5(377-470)):405.
 XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(1):405.
[3]屈军乐,陈丹妮,杨建军,等.二次谐波成像及其在生物医学中的应用[J].深圳大学学报理工版,2006,23(1):1.
 QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(1):1.
[4]郝中华,刘劲松.高斯光束在光伏光折变晶体中的孤波演化[J].深圳大学学报理工版,2001,18(1):15.
 HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(1):15.
[5]龙井华,阮双琛,巨养锋,等.新型超短光脉冲测量技术[J].深圳大学学报理工版,2001,18(4):46.
 LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(1):46.
[6]李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J].深圳大学学报理工版,2017,34(1):20.[doi:10.3724/SP.J.1249.2017.01020]
 Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(1):20.[doi:10.3724/SP.J.1249.2017.01020]
[7]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(1):272.[doi:10.3724/SP.J.1249.2017.03272]
[8]杨帅军,张建忠,刘毅,等.面向混沌激光器的高精度温控与驱动电路设计[J].深圳大学学报理工版,2018,35(5):495.[doi:10.3724/SP.J.1249.2018.05495]
 YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(1):495.[doi:10.3724/SP.J.1249.2018.05495]
[9]刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J].深圳大学学报理工版,2019,36(2):140.[doi:10.3724/SP.J.1249.2019.02140]
 LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,36(1):140.[doi:10.3724/SP.J.1249.2019.02140]
[10]李绍和,李九生,孙建忠.太赫兹频率编码器[J].深圳大学学报理工版,2019,36(2):162.[doi:10.3724/SP.J.1249.2019.02162]
 LI Shaohe,LI Jiusheng,and SUN Jianzhong.Terahertz frequency coding metasurface[J].Journal of Shenzhen University Science and Engineering,2019,36(1):162.[doi:10.3724/SP.J.1249.2019.02162]

备注/Memo

备注/Memo:
Received:2013-10-29;Accepted:2013-11-29
Foundation:National Natural Science Foundation of China(51275205,11204332)
Corresponding author:Professor Cheng Ya. E-mail: ya.cheng@siom.ac.cn
Citation:Ni Jielei, Cheng Ya. Several new phenomena in femtosecond laser filamentation[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(1): 1-15.(in Chinese)
基金项目:国家自然科学基金资助项目(51275205,11204332)
作者简介:倪洁蕾(1985-),女(汉族),广东省潮州市人,中国科学院上海光学精密机械研究所助理研究员、博士. E-mail: jieleini@yeah.net
引文:倪洁蕾,程亚. 飞秒激光成丝若干新效应研究进展[J]. 深圳大学学报理工版,2014,31(1):1-15.
更新日期/Last Update: 2014-01-08