[1]苏红,田静,张吉成,等.Zn纳米颗粒复合材料的太赫兹传输特性研究[J].深圳大学学报理工版,2013,30(No.5(441-550)):514-517.[doi:10.3724/SP.J.1249.2013.05514]
 Su Hong,Tian Jing,Zhang Jicheng,et al.Terahertz transmission property of Zn nanoparticle composites[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):514-517.[doi:10.3724/SP.J.1249.2013.05514]
点击复制

Zn纳米颗粒复合材料的太赫兹传输特性研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.5(441-550)
页码:
514-517
栏目:
光学工程
出版日期:
2013-09-02

文章信息/Info

Title:
Terahertz transmission property of Zn nanoparticle composites
文章编号:
20130511
作者:
苏红田静张吉成王纯栋郑丽杰张传义
深圳市激光工程重点实验室,先进光学精密制造技术广东普通高校重点实验室,深圳大学电子科学与技术学院,深圳518060
Author(s):
Su Hong Tian Jing Zhang Jicheng Wang Chundong Zheng Lijie and Zhang Chuanyi
Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P. R. China
关键词:
金属纳米颗粒太赫兹波功能器件太赫兹增强效应金属离子注入多重散射
Keywords:
metal nanoparticles terahertz wave functional device terahertz-enhanced effect metal ion implantation multiple scattering
分类号:
TN 211
DOI:
10.3724/SP.J.1249.2013.05514
文献标志码:
A
摘要:
利用金属离子注入技术,将Zn离子注入到硅基上形成一种Zn原子纳米颗粒复合材料. 基于太赫兹时域光谱系统,研究该纳米颗粒复合材料在太赫兹波段的传输特性. 结果表明,与硅片相比,随着Zn离子注入剂量的增加,太赫兹时域光谱中峰值位置从8 ps分别偏移至7.90、7.98与7.96 ps. 通过傅里叶变换,表明Zn离子注入后某些频率处会出现透射增强.
Abstract:
By using metal ion implantation technology, Zn ions were implanted into Si surface to form a kind of Zn atom nanoparticle composite. Based on terahertz time-domain spectrum system, the transmission property of the nanoparticle composite was studied at the terahertz wave band. The results show that compared with that of Si, the peak position of the nanoparticle composite in the spectra is shifted from 8 ps to 7.90 ps, 7.98 ps and 7.96 ps with an increase in metal ion implant dose. After the Fourier transform, the transmission-enhanced phenomenon was also observed at some frequency.

参考文献/References:

[1] Moldosanov K A, Lelevkin V M, Kozlov P V, et al. Terahertz-to-infrared converter based on metal nanoparticles: potentialities of applications[J]. Journal of Nanophotonics, 2012, 6(1): 061716-1-061716-13.
[2] Wang Yuhua, Ni Hongwei, Zhan Weiting, et al. Supercontinuum and THz generation from Ni implanted LiNbO3 under 800 nm laser excitation[J]. Optics Communication, 2013, 291: 334-336.
[3] Oh S J, Kang J, Maeng I, et al. Nanoparticle-enabled terahertz imaging for cancer diagnosis[J]. Optics Express, 2009, 17(5): 3469-3475.
[4] Park S G, Choi Y, Oh Y J, et al. Terahertz photoconductive antenna with metal nanoislands[J]. Optics Express, 2012, 20(23): 25530-25535.
[5] Shen L F, Chen X D, Zhang X F, et al. Guiding terahertz waves by a single row of periodic holes on a planar metal surface[J]. Plamonics, 2011, 6(2): 301-305.
[6] O’Hara J F, Averitt R D, Taylor A J. Terahertz surface plasmon polariton coupling on metallic gratings[J]. Optics Express, 2004, 12(25): 6397-6402.
[7] Seo M A, Park H R, Koo S M, et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit[J]. Nature Photonics, 2009, 3(3): 152-156.
[8] Yasuda H, Hosako I. Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy[J]. Japanese Journal of Applied Physics, 2008, 47(3): 1632-1634.
[9] Pupeza I, Wilk R, Koch M. Highly accurate optical material parameter determination with THz time-domain spectroscopy[J]. Optics Express, 2007, 15(7): 4335-4350.
[10] Su Hong, Zhou Hang, Wang Shixing, et al. Terahertz transmission properties of Cr ion implantation glass[J]. Chinese Optics Letters, 2010, 8(4): 425-427.
[11] Tian Jing, Su Hong, Wang Chundong, et al. Third-order nonlinear optical properties of Zn nanopaticles composites[C]// Proceedings of the Chinese Optical Society. Changsha(China):[s.n.], 2013: OJ1306250026-1.(in Chinese)
田静, 苏红, 王纯栋,等. 锌纳米颗粒复合材料的三阶非线性光学特性研究[C]// 中国光学学会学术大会. 长沙(中国):[s.n.], 2013: OJ1306250026-1.
[12] John S. Localization of light[J]. Physics Today, 1991, 44: 32-40.
[13] Keller O. On the theory of spatial localization of photons[J]. Physics Reports, 2005, 411(1/2/3): 1-232.

相似文献/References:

[1]张 敏,阮双琛,杨 珺,等.连续太赫兹波实时透射成像实验研究[J].深圳大学学报理工版,2007,24(4):384.
 ZHANG Min,RUAN Shuang-chen,YANG Jun,et al.Experimental study of continuous-wave terahertz radiation real-time transmission imaging[J].Journal of Shenzhen University Science and Engineering,2007,24(No.5(441-550)):384.
[2]李玲,廖晖,黄镜蓁,等.一维太赫兹光滤波器的模拟与制作[J].深圳大学学报理工版,2012,29(No.4(283-376)):295.[doi:10.3724/SP.J.1249.2012.04295]
 LI Ling,LIAO Hui,HUANG Jing-zhen,et al.Simulation and fabrication of one dimensional terahertz photonic filter[J].Journal of Shenzhen University Science and Engineering,2012,29(No.5(441-550)):295.[doi:10.3724/SP.J.1249.2012.04295]
[3]李绍和,李九生,孙建忠.太赫兹频率编码器[J].深圳大学学报理工版,2019,36(2):162.[doi:10.3724/SP.J.1249.2019.02162]
 LI Shaohe,LI Jiusheng,and SUN Jianzhong.Terahertz frequency coding metasurface[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(441-550)):162.[doi:10.3724/SP.J.1249.2019.02162]
[4]刘俊星,索鹏,傅吉波,等.基于VO2相变实现太赫兹波段宽带抗反射[J].深圳大学学报理工版,2019,36(2):189.[doi:10.3724/SP.J.1249.2019.02189]
 LIU Junxing,SUO Peng,et al.Broad band antireflection in terahertz band based on vanadium dioxide phase transition[J].Journal of Shenzhen University Science and Engineering,2019,36(No.5(441-550)):189.[doi:10.3724/SP.J.1249.2019.02189]

备注/Memo

备注/Memo:
Received:2013-06-30;Accepted:2013-08-01
Foundation:National Natural Science Foundation of China (61078018); Research Fund for the Doctoral Program of Ministry of Education of College (20104408120002)
Corresponding author:Professor Su Hong. E-mail: hsu@szu.edu.cn
Citation:Su Hong, Tian Jing, Zhang Jicheng, et al. Terahertz transmission property of Zn nanoparticles composite[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 514-517.(in Chinese)
基金项目:国家自然科学基金资助项目(61078018);教育部高校博士点专项基金资助项目(20104408120002)
作者简介:苏红(1973-),女(汉族) ,山西省稷山县人,深圳大学教授. E-mail:hsu@szu.edu.cn
引文:苏红,田静,张吉成,等. Zn纳米颗粒复合材料的太赫兹传输特性研究[J]. 深圳大学学报理工版,2013,30(5):514-517.
更新日期/Last Update: 2013-09-02