[1]杨伦,楼文娟,潘小涛.覆冰输电线路舞动的非线性数值分析[J].深圳大学学报理工版,2013,30(No.5(441-550)):495-503.[doi:10.3724/SP.J.1249.2013.05495]
 Yang Lun,Lou Wenjuan,and Pan Xiaotao.Nonlinear numerical analysis for galloping of iced transmission lines[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):495-503.[doi:10.3724/SP.J.1249.2013.05495]
点击复制

覆冰输电线路舞动的非线性数值分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.5(441-550)
页码:
495-503
栏目:
土木建筑工程
出版日期:
2013-09-02

文章信息/Info

Title:
Nonlinear numerical analysis for galloping of iced transmission lines
文章编号:
20130509
作者:
杨伦楼文娟潘小涛
浙江大学结构工程研究所,杭州 310058
Author(s):
Yang Lun Lou Wenjuan and Pan Xiaotao
Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, P.R.China
关键词:
电网安全输电塔线欧拉梁单元覆冰导线完全拉格朗日格式非线性有限元自由度缩聚舞动机理
Keywords:
power system security transmission tower line Euler beam element iced-conductor Total Lagrange nonlinear finite element method degrees of freedom reduced method galloping mechanism
分类号:
TM 752
DOI:
10.3724/SP.J.1249.2013.05495
文献标志码:
A
摘要:
针对覆冰导线舞动时大幅振动所致的几何大变形效应和所受气动荷载的非线性特征,基于完全拉格朗日格式(Total Lagrange),建立了适用于单导线和分裂导线舞动数值模拟的非线性有限元动力分析方法.采用具有扭转自由度的三节点抛物线索单元离散覆冰单导线.对于覆冰分裂导线,在单导线有限元法的基础上,利用欧拉梁单元模拟间隔棒的运动过程,提出了计算更为高效的梁节点弯曲自由度缩聚法,实现了间隔棒与分裂子导线之间的耦合,运用随转坐标系法求解了舞动过程中的梁节点不平衡力,借助ANSYS计算软件对提出的舞动分析方法进行了验证.在此基础上,对典型新月形覆冰断面的输电线路进行了舞动分析,考察了单导线和四分裂导线在不同流场中的起舞机理和响应特性.结果表明,由于分裂导线的扭转刚度远大于单导线,在升力和扭转系数的斜率均为负的情况下,分裂导线更易发生大幅舞动.
Abstract:
A dynamic nonlinear numerical model in consideration of aerodynamic and geometric nonlinearities was established to simulate the galloping behavior of iced single and bundled conductors with arbitrary number of sub conductors on the basis of Total Lagrange finite element method. The three-node parabolic cable element with torsional degree of freedom was applied to discrete the single conductor. As for finite element model of bundled conductor, the Euler beam element added into sub-conductors was used to simulate the movement of spacing rod. An effective bending degree of freedom reduced method was introduced to simulate the coupling effects of cable and beam element. Meanwhile, the unbalance force vectors of beam element during galloping process were derived precisely by employing co-rotational coordinate system method. Moreover, the accuracy and reliability of the presented numerical method was proved by ANSYS software. Finally, based on the aerodynamic force of iced conductor with crescent shape obtained by wind tunnel experiment, the galloping mechanism and dynamic responses of single and quad-bundled conductors were investigated in uniform flow and turbulent flow fields. The results show that when the bevels of both lift and torsional coefficients are negative, the bundled conductors are more likely to be galloping because their torsional stiffness is much larger than single ones.

参考文献/References:

[1] Zhu Kuanjun, Fu Dongjie, Wang Jingchao, et al. The galloping and its preventing techniques on overhead transmission line[J]. Electrical Equipment, 2009, 9(6): 8-12.(in Chinese)
朱宽军,付东杰,王景朝,等. 架空输电线路的舞动及防治[J]. 电力设备,2009,9(6):8-12.
[2] Wei Chong, Pan Shaocheng, Tang Minggui, et al. Analysis and threatment of the galloping of 500kV transmission line[J]. Electric Power Construction,2011, 32(4): 24-27.(in Chinese)
魏冲,潘少成,唐明贵,等. 500kV输电线路舞动分析及治理[J]. 电力建设,2011, 32(4): 24-27.
[3] Den Hartog J P. Transmission line vibration due to sleet[J]. AIEE Transactions, 1932, 51(4): 1074-1086.
[4] Nigol O, Clarke G J, Havard D G. Torsional stability of bundle conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(5): 1666-1674.
[5] Yu P, Popplewell N, Shah A H. Instability trends of inertially coupled galloping[J]. Journal of Sound and Vibration, 1995, 183(4): 663-678.
[6] Macdonald J H G, Larose G L. Two-degree-of-freedom inclined cable galloping[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3): 291-326.
[7] Wang J W. Large vibrations of overhead electrical lines: a full 3-dof model for galloping studies[D]. Province of Liège(Belgum): Universite de Liege, 1996, 151: 1-227.
[8] Chen Xiaoming, Deng Hongzhou, Wang Zhaomin. Conductor galloping stability analysis of long-span transmission system[J]. Engineering Mechanics, 2004, 21(1): 56-60.(in Chinese)
陈晓明, 邓洪洲, 王肇民. 大跨越输电线路舞动稳定性研究[J]. 工程力学, 2004, 21(1): 56-60.
[9] Luongo A, Piccardo G. Non-linear galloping of sagged cables in 1: 2 internal resonance[J]. Journal of Sound and Vibration, 1998, 214(5): 915-940.
[10] Liu Haiying, Zhang Qichang, Hao Shuying. A study on galloping for iced quad-bundled conductor[J]. Journal of Vibration Engineering,2011,24(3): 235-239.(in Chinese)
刘海英,张琪昌,郝淑英. 覆冰四分裂导线舞动研究[J]. 振动工程学报,2011,24(3): 235-239.
[11] Yan Z M, Yan Z T, Li Z, et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity[J]. Journal of Sound and Vibration, 2012,331: 3599-3616.
[12] Desai Y M, Yu P, Popplewell N, et al. Finite element modelling of transmission line galloping[J]. Computers & Structures, 1995, 57(3): 407-420.
[13] Li Li, Chen Yuankun, Xia Zhengchun, et al. Nonlinear numerical simulation study of iced conductor galloping[J]. Journal of Vibration and Shock, 2011, 30(8): 107-111.(in Chinese)
李黎, 陈元坤, 夏正春, 等. 覆冰导线舞动的非线性数值仿真研究[J]. 振动与冲击, 2011, 30(8): 107-111.
[14] Yan Bo, Li Wenyun, Zhou Song, et al. Numerical simulation on galloping of quad-bundled conductor[J]. Journal of Vibration and Shock, 2010, 29(9): 102-107.(in Chinese)
严波,李文蕴,周松,等. 覆冰四分裂导线舞动数值模拟研究[J]. 振动与冲击, 2010, 29(9):102-107.
[15] Liu Xiaohui, Yan Bo, Zhang Hongyan, et al. Nonlinear finite element analysis for galloping of iced bundled conductors [J]. Journal of Vibration and Shock, 2010, 29(6):129-133.(in Chinese)
刘小会,严波,张宏雁,等. 分裂导线舞动非线性有限元分析方法[J]. 振动与冲击, 2010, 29(6):129-133.
[16] Ma Yuquan. A new CR formulation and its application in geometrically nonlinear analysis[J]. Science Technology and Engineering, 2010, 20(10): 7476-7488.(in Chinese)
马玉全. 改进CR列式法及在几何非线性分析中的应用[J]. 科学技术与工程, 2010, 20(10): 7476-7488.
[17] Yang Qi, Huang Jianyue. 3D geometric nonlinear simulation analysis of long span bridges[J]. Central South Highway Engineering, 2005, 30(1):59-62.(in Chinese)
杨琪, 黄建跃. 大跨度桥梁空间几何非线性仿真分析的研究[J]. 中南公路工程, 2005, 30(1):59-62.
[18] Wang Xucheng, Shao Min. Basic Principles and Numerical Simulation of Finite Element Method[M]. Beijing: Tsinghua University Press, 1995: 549-550.(in Chinese)
王勖成,邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社,1995:549-550.

备注/Memo

备注/Memo:
Received:2013-06-06;Accepted:2013-08-20
Foundation:National Natural Science Foundation of China(51178424)
Corresponding author:Porfessor Lou Wenjuan. E-mail: louwj@zju.edu.cn
Citation:Yang Lun,Lou Wenjuan, Pan Xiaotao. Nonlinear numerical analysis for galloping of iced transmission lines[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 495-503.(in Chinese)
基金项目:国家自然科学基金资助项目(51178424)
作者简介:杨伦(1986-),男(汉族),新疆维吾尔自治区伊宁市人,浙江大学博士研究生. E-mail: yanglun926@163.com
引文:杨伦,楼文娟,潘小涛. 覆冰输电线路舞动的非线性数值分析[J]. 深圳大学学报理工版,2013,30(5):495-503.
更新日期/Last Update: 2013-09-02