[1]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475-479.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):475-479.[doi:10.3724/SP.J.1249.2013.05475]
点击复制

利用混合巡游方法控制时空混沌()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.5(441-550)
页码:
475-479
栏目:
电子与信息科学
出版日期:
2013-09-02

文章信息/Info

Title:
Control of spatiotemporal chaos by a hybrid itinerant feedback method
文章编号:
20130506
作者:
谷坤明 谢伟苗 王宇 高继华
深圳大学材料学院, 深圳市特种功能材料重点实验室, 深圳 518060
Author(s):
Gu Kunming Xie Weimiao Wang Yu and Gao Jihua
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
混沌时空系统 时空混沌混沌控制反馈控制 复金兹堡-朗道方程随机巡游方法 混合巡游方法
Keywords:
chaos spatiotemporal system spatiotemporal chaos chaotic control feedback control complex Ginzburg-Landau equation random itinerant method hybrid itinerant feedback method
分类号:
O 415.5
DOI:
10.3724/SP.J.1249.2013.05475
文献标志码:
A
摘要:
以复金兹堡-朗道方程为时空系统模型, 结合随机巡游反馈法和校正反馈法在不同时空的优势,提出一种混合巡游反馈控制时空混沌的方法.根据具体不同时空的特点, 引入校正概率作为新的控制参数, 通过数值模拟,得到校正概率与控制强度以及巡游时间的关系. 采用混合巡游反馈控制方法能有效控制时空系统.
Abstract:
A hybrid itinerant feedback method was proposed to control the spatiotemporal chaos in two-dimensional complex Ginzburg-Landau equation.The rectification probability as a new controlling parameter is introduced to combine the random and rectification itinerant feedback methods to comply with different characteristics of various spatiotemporal systems.The relationships between rectification probability and other controlling parameters for a successful control of spatiotemporal chaos are investigated via numerical experiments.

参考文献/References:

[1] Ott E,Grebogi C,York J.Controlling chaos[J].Physical Review Letters,1990,64:1196-1199.
[2] Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters, 1990,64:821-824.
[3] Pyragas K.Weak and strong synchronization of chaos[J].Physical Review E,1996,54(5):R4508-R4511.
[4] Rosa E,Ott E,Hess M H.Transition to phase synchronization of chaos[J].Physical Review Letters, 1998,80(8):1642-1645.
[5] Pyragas K.Continuous control of chaos by self-controlling feedback[J].Physics Letter,1992,A170(6):421-428.
[6] Ditto W L,Showalter K.Introduction:control and synchronization of chaos[J].Chaos,1997,7(4):509-511.
[7] Ahlborn A,Parlitz U.Control and synchronization of spatiotemporal chaos[J].Physical Review E,2008,77:0162011-0162017.
[8] Xie Lingling, Gao Jihua.Size transition of spiral waves using the pulse array method[J].Chinese Physics B,2010,B19(6):0605161-0605164.
[9] Gao Jihua,Liu Ying,Peng Jianhua.Controlling Hyperchaos with linear feedback[J].Journal of Shenzhen University Science and Engineering,2003,20(3):14-18.(in Chinese)
高继华,刘颖,彭建华.线性反馈法控制超混沌系统的高周期态[J].深圳大学学报理工版,2003,20(3):14-18.
[10] Gao Jihua,Xiao Jinhua,Peng Jianhua.Enhancement of spatiotemporal chaos control by applying shift feedback injections[J].Journal of Shenzhen University Science and Engineering,2006,23(1):80-84.(in Chinese)
高继华,肖井华,彭建华.利用错位反馈注入方法提高时空混沌控制效率[J].深圳大学学报理工版, 2006,23(1):80-84.
[11] Gao Jihua,Liu Wenjun,Chen Dijia,et al.Controlling spatiotemporal chaos with a function feedback scheme[J].Journal of Shenzhen University Science and Engineering,2007,24(3):267-271.(in Chinese)
高继华,柳文军,陈迪嘉,等.函数反馈方法控制时空混沌[J]. 深圳大学学报理工版,2007,24(3):267-271.
[12] Hu Gang,Qu Zhilin.Controlling spatiotemporal chaos in coupled map lattice systems[J].Physical Review Letters,1994,72(1):68-71.
[13] Aranson I,Levine H,Tsimring L.Controlling spatiotemporal chaos[J].Physical Review Letters,1994,72(16):2561-2564.
[14] Kuang Yulan, Tang Guoning.Suppressions of spiral waves and spatiotemporal chaos in cardiac tissue[J].Acta Physica Sinica,2012,61(10):100504-1-100504-8.(in Chinese)
邝玉兰,唐国宁.心脏中的螺旋波和时空混沌的抑制研究[J].物理学报,2012,61(10):100504-1-100504-8.
[15] Hu G,Xiao J H,Gao J H,et al.Analytical study of spatiotemporal chaos control by applying local injections[J].Physical Review E,2000,62(3):R3043-3046.
[16] Gao Jihua,Zheng Zhigang.Controlling spatiotemporal chaos with a generalized feedback method[J].Chinese Physics Letters,2007,24(2):359-362.
[17] Peng J H,Ding E J,Ding M,et al.Synchronizing hyperchaos with a scalar transmitted signal[J].Physical Review Letters,1996,76(6):904-907.
[18] Xiao Jinghua,Hu Gang,Yang Junzhong,et al.Controlling turbulence in the complex Ginzburg-Landau equation[J].Physical Review Letters,1998,81(25):5552-5555.
[19] Gao Jihua, Wang Xingang, Hu Gang, et al.Control of spatiotemporal chaos by using itinerant feedback injections[J].Physics Letters A,2001,283(5/6):342-348.
[20] Gao Jihua,Zheng Zhigang,Tang Jiaoning,et al.Controlling chaos with rectificative feedback injections in 2D coupled complex Ginzburg-Landau oscillators[J].Communications in Theoretical Physics,2003,40(3):315-318.
[21] Gao Jihua,Xie Lingling,Peng Jianhua.Controlling spatiotemporal chaos by speed feedback method[J].Acta Physica Sinica,2009,58(5):5218-5223.(in Chinese)
高继华,谢玲玲,彭建华.利用速度反馈方法控制时空混沌[J].物理学报,2009,58(5):5218-5223.
[22] Kuramoto Y.Chemical Oscillations, Waves and Turbulence[M].New York:Springer,1984.
[23] Janiaud B,Pumir A,Bensimon D,et al.The Eckhaus instability for traveling waves[J].Physica D:Nonlinear Phenomena,1992,55(3/4):269-286.
[24] Cross M C,Hohenberg P C.Pattern for mation outside of equilibrium[J].Reviews of Modern Physics,1993,65(3):851-1112.
[25] Aranson I S,Kramer L.The world of the complex Ginzburg-Landau equation[J].Reviews of Modern Physics, 2002,74(1):99-143.

[26] Lv Ling,Li Gang,Xu Wen,et al.Network synchronization of spatiotemporal chaos and parameter identification in complex Ginzburg-Landau equation[J].Acta Physica Sinica,2012,61(6):060507-1-060507-5.(in Chinese)
吕翎,李刚,徐文,等.复Ginzburg-Landau方程时空混沌的网络同步与参量辨识[J].物理学报,2012,61(6):060507-1-060507-5.
[27] Gao Jihua,Xie Weimiao,Gao Jiazhen,et al.Amplitude spiral wave in coupled complex Ginzburg-Landau equation[J].Acta Physica Sinica,2012,61(13):130506-1-130506-6.(in Chinese)
高继华,谢伟苗,高加振,等.耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波[J].物理学报,2012,61(13):130506-1-130506-6.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(No.5(441-550)):327.
[2]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
[3]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(No.5(441-550)):626.[doi:10.3724/SP.J.1249.2014.06626]
[4]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(No.5(441-550)):43.
[5]高继华,史文茂,张超,等.耦合复Ginzburg-Landau方程中的相-模螺旋结构相似性[J].深圳大学学报理工版,2016,33(3):272.[doi:10.3724/SP.J.1249.2016.03272]
 Gao Jihua,Shi Wenmao,Zhang Chao,et al.Similarity of spiral structures between phase and amplitude in coupled complex Ginzburg-Landau equation[J].Journal of Shenzhen University Science and Engineering,2016,33(No.5(441-550)):272.[doi:10.3724/SP.J.1249.2016.03272]
[6]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(No.5(441-550)):51.[doi:10.3724/SP.J.1249.2020.01051]

备注/Memo

备注/Memo:
Received:2013-04-02;Accepted:2013-07-15
Foundation:National High-Tech Research and Development Program of China (2012AA030312)
Corresponding author:Professor Gao Jihua.E-mail:jhgao@szu.edu.cn
Citation:Gu Kunming, Xie Weimiao, Wang Yu, et al. Control of spatiotemporal chaos by a hybrid itinerant feedback method[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 475-479.(in Chinese)
基金项目:国家高技术研究发展计划资助项目(2012AA030312)
作者简介:谷坤明(1973-),男(汉族),湖南省邵东县人,深圳大学副教授、博士. E-mail:kmgu@szu.edu.cn
引文:谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J]. 深圳大学学报理工版,2013,30(5):475-479.
更新日期/Last Update: 2013-09-02