[1]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469-474.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):469-474.[doi:10.3724/SP.J.1249.2013.05469]
点击复制

时变离散时空系统的混沌性()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.5(441-550)
页码:
469-474
栏目:
电子与信息科学
出版日期:
2013-09-02

文章信息/Info

Title:
Chaos of time-varying discrete spatiotemporal systems
文章编号:
20130505
作者:
田传俊1 陈关荣2
1) 深圳大学信息工程学院,深圳518060
2) 香港城市大学电子工程系,香港
Author(s):
Tian Chuanjun1 and Chen Guanrong2
1) College of Information Engineering, Shenzhen University, Shenzhen 518060, P.R.China
2) Department of Electronic Engineering, City University of Hong Kong, Hong Kong, P.R.China
关键词:
混沌保密通信设计动力系统离散系统时变离散时空系统Devaney混沌
Keywords:
chaos secure communication design dynamical system discrete system time-varying discrete spatiotemporal system Devaney chaos
分类号:
TN 911
DOI:
10.3724/SP.J.1249.2013.05469
文献标志码:
A
摘要:
时变离散时空系统含有大量初始参数,将其用于保密通信设计可加强密钥数量.研究一类时变离散时空系统的混沌性,给出这类时变离散时空系统在Devaney意义下混沌的一些新概念,构造出一类特殊的时变离散时空混沌系统.该结果可拓宽离散混沌系统的研究范围.
Abstract:
Time-varying discrete spatiotemporal systems contain many tunable parameters and are advantageous in the sense of having a sufficiently large key space for designing good security systems. Chaos in a class of time-varying discrete spatiotemporal systems is studied. Several new concepts for these systems to be chaotic in the sense of Devaney are given and a special type of such chaotic systems is constructed. To some extent, the new results have expanded the scope of the research of discrete spatiotemporal chaotic systems.

参考文献/References:

[1] Elaydi S N,Discrete chaos: with applications in science and engineering, 2nd revised edition, Chapman & Hall/CRC, 2007.
[2] Tian C J,Chen G R.Stability and chaos in a class of 2-dimensional spatiotemporal discrete systems[J].Journal of Mathematical Analysis and Applications,2009,356(2):800-815.
[3] AlSharawi Z,Angelos J,Elaydi S,et al.An extension of Sharkovsky’s theorem to periodic difference equations[J].Journal of Mathematical Analysis and Applications,2006,316(1):128-141.
[4] Tian Chuanjun,Chen Guanrong.Chaos of a sequence of maps in a metric space[J].Chaos,Solitons & Fractals,2006,28(4):1067-1075.
[5] Tian Chuanjun,Chen Guanrong. On variable-parametric discrete Devaney Chaotic systems[J].Journal of Shenzhen University Science and Engineering,2006,23(1):16-20.(in Chinese)
田传俊,陈关荣.关于变参数离散Devaney混沌系统[J]. 深圳大学学报理工版,2006,23(1):16-20.
[6] Shi Y M,Chen G.Chaos of time-varying discrete dynamical systems[J].Journal of Difference Equations and Applications,2009,15(5):429-449.
[7] Huang Qiuling,Shi Yuming,Zhang Lijuan.Chaotification of nonautonomous discrete dynamical systems[J].International Journal of Bifurcation and Chaos,2011,21(11):3359-3371.
[8] Shi Yuming. Chaos in nonautonomous discrete dynamical systems approached by their induced systems[J].International Journal of Bifurcation and Chaos,2012, 22(11):1250284-1-1250284-12.
[9] Hao Chunbao,Fan Qinjie,Meng Ming.Expansion of variable-parameter dynamomical system[J].Journal of Shenyang Normal University Natural Science,2012,30(1):16-19.(in Chinese)
郝春宝,范钦杰,孟明.变参数动力系统的扩张性[J].沈阳师范大学学报,2012,30(1):16-19.
[10] Zhang Lijuan,Shi Yuming.Time-varying perturbations of chaotic discrete systems[J].International Journal of Bifurcation and Chaos,2012,22(3):1250066-1-1250066-14.
[11] Song Xiaoqian,Liu Jinkui,Wang Liangwei.Ruelle-takens chaos in non-autonomous dynamical systems[J].Engineering Mathematics Letters,2012,1(1):65-74.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(No.5(441-550)):327.
[2]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
[3]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(No.5(441-550)):626.[doi:10.3724/SP.J.1249.2014.06626]
[4]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(No.5(441-550)):43.
[5]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(No.5(441-550)):51.[doi:10.3724/SP.J.1249.2020.01051]

备注/Memo

备注/Memo:
Received:2013-03-11;Accepted:2013-08-19
Foundation:National Natural Science Foundation of China (61070252)
Corresponding author:Professor Tian Chuanjun.E-mail:tiancj@szu.edu.cn
Citation:Tian Chuanjun,Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 469-474.(in Chinese)
基金项目:国家自然科学基金资助项目(61070252)
作者简介:田传俊(1964-),男(汉族),湖北省荆州市人,深圳大学教授.E-mail: tiancj@szu.edu.cn
引文:田传俊,陈关荣.时变离散时空系统的混沌性[J]. 深圳大学学报理工版,2013,30(5):469-474.
更新日期/Last Update: 2013-09-02