[1]戴洪德,吴光彬,吴晓男,等.飞机液压系统压力检测仪的SVM建模研究[J].深圳大学学报理工版,2013,30(No.3(221-330)):275-279.[doi:10.3724/SP.J.1249.2013.03275]
 Dai Hongde,Wu Guangbin,Wu Xiaonan,et al.Research on the SVM based modeling method for detection equipment about hydraulic pressure of aircraft[J].Journal of Shenzhen University Science and Engineering,2013,30(No.3(221-330)):275-279.[doi:10.3724/SP.J.1249.2013.03275]
点击复制

飞机液压系统压力检测仪的SVM建模研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.3(221-330)
页码:
275-279
栏目:
自控精仪
出版日期:
2013-05-19

文章信息/Info

Title:
Research on the SVM based modeling method for detection equipment about hydraulic pressure of aircraft
文章编号:
20130309
作者:
戴洪德吴光彬吴晓男卢建华
海军航空工程学院控制工程系,山东 烟台 264001
Author(s):
Dai Hongde Wu Guangbin Wu Xiaonan and Lu Jianhua
Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, Shandong Province, P.R.China
关键词:
检测液压飞机非线性最小二乘支持向量机建模
Keywords:
detection hydraulic pressure aircraft nonlinearity least square support vector machine modeling
分类号:
TJ 81;V 245
DOI:
10.3724/SP.J.1249.2013.03275
文献标志码:
A
摘要:
针对飞机液压系统检测仪建模中,待测压力和检测仪输出电信号间存在较强的非线性关系,使用最小二乘法需预先确定模型结构,给实用造成一定困难的问题,采用支持向量机强大的非线性回归功能,以标准液压源提供的压力输入及检测设备的电信号输出作为支持向量机的学习样本对,完成支持向量机的训练,得到液压检测仪的数学模型.实际液压系统实验结果表明,该方法能建立准确的输入输出关系,具有较好的实用价值.
Abstract:
In order to display the corresponding value of hydraulic pressure based on the voltage of the hydraulic sensor’s output, modeling of detection equipment for hydraulic pressure of aircraft is needed. There exists strong nonlinearity between the pressure to be measured and the output of electrical signal in theory. Although the least square method can be used for the modeling of the input-output, the style of the model must be ascertained in advance. A support vector machine with strong nonlinear regression capacity was applied to this modeling problem. The pressure provided by standard pressure source, and the electrical signal output of the detection equipment were employed as the study sample of the support vector machine. Training by the support vector machine, the mathematical model of the detection equipment was built. Experiment results of a real hydraulic pressure system show that, support vector machine can establish the relationship between the input and output exactly and has great value of practical application.

参考文献/References:

[1] Jiang Huijun, An Yujiao, Yuan Zhaohui. Flow pressure simulation of aircraft hydraulic system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 1357-1370.(in Chinese)
江辉军, 安玉娇, 袁朝辉. 飞机液压系统流量压力负载模拟[J]. 航空学报, 2011,32(5):1357-1370.
[2] Zarchan P, Musoff H. Fundamentals of Kalman Filtering: a Practical Approach[M]. 2nd ed. Virginia: American Institute of Aeronautics and Astronautics Press, 2005.
[3] Zhou Fengqi, Lu Xiaodong. Theory of Optimal Estimation[M]. Beijing: Higher Education Press, 2009.(in Chinese)
周凤岐,卢晓东. 最优估计理论[M]. 北京:高等教育出版社,2009.
[4] Vapnik V N. Statistical Learning Theory[M]. New York: John Wiley & Sons Press, 1998.
[5] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 2000.
[6] Zhang Xuegong. The Nature of Statistical Learning Theory[M]. Beijing: Tsinghua University Press, 2000.(in Chinese)
张学工. 统计学习理论的本质[M]. 北京:清华大学出版社, 2000.
[7] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M]. Cambridge(UK): Cambridge University Press, 2000.
[8] Burges C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 127-167.
[9] Wu Guangbin. Research on an aero-engine fire detected system based on BP neural network[J]. Journal of Naval Aeronautical and Astronautical University, 2008, 23(4): 383-386.(in Chinese)
吴光彬.基于BP神经网络算法的飞机发动机火警信号系统研究[J]. 海军航空工程学院学报, 2008, 23(4): 383-386.
[10] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
[11] Suykens J A K, Vandewalle J, De Moor B. Optimal control by least squares support vector machines[J]. Neural Networks, 2001, 14(1) : 23-35.

相似文献/References:

[1]陈爱国,王成勇,叶家玮.舰船波浪运动加速度积分误差纠正与预报[J].深圳大学学报理工版,2013,30(No.6(551-660)):565.[doi:10.3724/SP.J.1249.2013.06565]
 Chen Aiguo,Wang Chengyong,and Ye Jiawei.Correction and forecasting techniques of acceleration integral error of ship wave movements[J].Journal of Shenzhen University Science and Engineering,2013,30(No.3(221-330)):565.[doi:10.3724/SP.J.1249.2013.06565]
[2]陶然,王越,单涛,等.分布式无源检测信息系统研究进展[J].深圳大学学报理工版,2004,21(2):101.
 TAO Ran,WANG Yue,SHAN Tao,et al.Research on the development of distributed passive detection system[J].Journal of Shenzhen University Science and Engineering,2004,21(No.3(221-330)):101.
[3]李辰,魏丞昊,王志琪,等.太赫兹波谱在冬虫夏草检测中的应用[J].深圳大学学报理工版,2019,36(2):213.[doi:10.3724/SP.J.1249.2019.02213]
 LI Chen,WEI Chenghao,WANG Zhiqi,et al.Authenticity assessment of Cordyceps sinensis using terahertz spectroscopy[J].Journal of Shenzhen University Science and Engineering,2019,36(No.3(221-330)):213.[doi:10.3724/SP.J.1249.2019.02213]

备注/Memo

备注/Memo:
Received:2012-05-10;Revised:2013-03-25;Accepted:2013-04-05
Foundation:Pre-research Foundation of National Defense(51309060401)
Corresponding author:Associate professor Wu Guangbin. E-mail:wugbin007@yahoo.com.cn
Citation:Dai Hongde, Wu Guangbin,Wu Xiaonan,et al. Research on the SVM based modeling method for detection equipment about hydraulic pressure of aircraft[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(3): 275-279.(in Chinese)
基金项目:国防预研基金资助项目(51309060401)
作者简介:戴洪德(1981-),男(汉族),江苏省泰州市人,海军航空工程学院讲师、博士.E-mail:dihod@126.com
引文:戴洪德,吴光彬,吴晓男,等.飞机液压系统压力检测仪的SVM建模研究[J]. 深圳大学学报理工版,2013,30(3):275-279.
更新日期/Last Update: 2013-05-19