[1]顾樵.量子熵及其在生物光子学中的应用[J].深圳大学学报理工版,2013,30(No.2(111-220)):111-121.[doi:10.3724/SP.J.1249.2013.02111]
 Gu Qiao,Quantum entropy and its applications in biophotonics[J].Journal of Shenzhen University Science and Engineering,2013,30(No.2(111-220)):111-121.[doi:10.3724/SP.J.1249.2013.02111]
点击复制

量子熵及其在生物光子学中的应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.2(111-220)
页码:
111-121
栏目:
光电工程
出版日期:
2013-03-18

文章信息/Info

Title:
Quantum entropy and its applications in biophotonics
作者:
顾樵12
1) 德国国际量子生物学研究所,Haβloch 67454,德国
2) 深圳大学电子科学与技术学院,深圳 518060
Author(s):
Gu Qiao1 2
1) International Institute of Quantum Biology, Haβloch 67454, Germany
2) College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
光子-声子相互作用非经典光量子统计性质薛定谔猫态光场的量子熵生物光子辐射的相干性光子统计熵转基因黄豆的识别
Keywords:
photon-phonon interaction nonclassical light quantum statistical properties Schrö' target="_blank" rel="external"> FONT-SIZE: 14pt">ödinger-cat-state quantum entropy of light field coherence of biophoton emission photon statistical entropy distinguish of soybean sample treated genetically
分类号:
O 431.2
DOI:
10.3724/SP.J.1249.2013.02111
文献标志码:
A
摘要:
基于光子场与声子库的相互作用机制,建立一个量子光学模型来描述“薛定谔猫”态所诱导的非经典效应的动力学演化.研究光场的量子统计性质(包括光子数分布、平均光子数、光子数方差和光场起伏),讨论了光场量子熵的时间演化,涉及Shannon熵、Wehrl熵及光子统计熵.研究表明,这三种熵在描述光场的量子统计性质方面是相互等价的,而光子统计熵具有可测量的特点,因此光子统计熵的概念和表述被用来研究生物光子辐射的相干性问题.通过测量新鲜树叶和一个非生命天然辐射体的自发光子辐射,对比分析相应的光子数方差及光子统计熵.结果表明,生物光子辐射具有高度的相干性.经考察衰变过程中的生物光子辐射相干性,并与稳态情况相比较,发现两者高度一致.特别是,可采用统一的表达式拟合衰变和稳态两种情况下场熵G(N)随平均光子数N的变化.作为应用,测量了转基因黄豆的自发光子辐射,并与相应的传统样品相比较,发现两者在光子统计熵的意义上有显著区别.
Abstract:
A quantum optical model has been presented for the description of biophoton activity, which is based on the quantum theory of the interaction of a photon field with a phonon reservoir. The model is used to analyze the dynamics of the nonclassical effects induced by the Schrdinger-cat-state, especially involving the aspects of quantum entropy of light field, including Shannon entropy, Wehrl entropy and the photon statistical entropy. In particular, the photon statistical entropy is predicted to be able to characterize coherence properties of biophotons, which can be obtained by means of measurement of spontaneous emission from the samples. Experiments on a leaf are then performed and compared with a non-living radiator; the biophotons are found to have significantly higher coherence than the ordinary light. As an application, biophoton emission of the soybean samples with and without genetic treatment is investigated, and the significant difference between them is found out in terms of the photon statistical entropy.

参考文献/References:

[1] Popp F A, Gu Qiao, Li K H. Biophoton emission: experimental background and theoretical approaches (review)[J]. Modern Physics Letter, 1994, B8(21/22): 1269-1296.
[2] Gu Qiao. Quantum theory of biophoton emission[C]// Popp F A, Li K H, Gu Qiao. Recent advances in biophoton research and its applications. Singapore: World Scientific, 1992: 59-114.
[3] Gu Qiao, Popp F A. Nonlinear response of biophoton emission to external perturbations (review)[J]. Experientia, 1992, 48(11/12): 1069-1082.
[4] Gu Qiao, Popp F A. Biophoton emission as a potential measure of organizational order[J]. Science in China (English edition), 1994, B37(9): 1099-1112.
[5] Galle M. Population density-dependence of biophoton emission from Daphnia[C] // Popp F A, Li K H, Gu Qiao. Recent advances in biophoton research and its applications. Singapore: World Scientific, 1992: 345-356.
[6] Popp F A. Some essential questions of biophoton research and probable answers[C] // Popp F A, Li K H, Gu Qiao. Recent advances in biophoton research and its applications. Singapore: World Scientific, 1992: 1-46.
[7] Gu Qiao. Biophotons and nonclassical light[C] // Chang J J, Fisch J, Popp F A. Biophotons. Dordrecht(Nether land): Kluwer Academic Publishers, 1998: 299-321.
[8] Louisell W H. Quantum Statistical Properties of Radiation[M]. New York: John Wiley & Sons, 1973, 57-85.
[9] Gu Qiao. Squeezing in an one-atom maser[J]. Chinese Journal of Lasers, 1990, 17(6): 347-351.
[10] Gu Qiao. Quantum interference between coherent states[C] // Beloussov L V, Popp F A. Biophotonics. Moscow: Bioinform Services Company, 1995: 59-114.
[11] Glauber R J. Classical behavior of systems of quantum oscillators[J]. Physics Letters, 1966, 21(6): 650-652.
[12] Gu Qiao. Quantum entropy of radiation fields[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(2): 95-104.
[13] Gu Qiao. The maximum entropy principle for radiation fields[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(4): 283-294.
[14] Wehrl A. On the relation between classical and quantum-mechanical entropy[J]. Reports on Mathematical Physics, 1979, 16(3): 353-358.
[15] Deutsch D. Uncertainty in quantum measurements[J]. Physical Review Letters, 1983, 50(9): 631-636.
[16] Chen Jingqiu, Gu Qiao. The Wehrl’s entropy of Schr?dinger-cat states[J]. Modern Applied Science, 2009, 3(3): 10-15.
[17] Gu Qiao. Radiation and Bioinformation[M]. Beijing: Science Press, 2003: 305-328.

备注/Memo

备注/Memo:
 Received:2013-01-06;Accepted:2013-02-16
Foundation:Special Project of International Institute of Quantum Biology, Germany
Corresponding author:Professor Gu Qiao. E-mail: gu-qiao@gmx.de
Citation:Gu Qiao. Quantum entropy and its applications in biophotonics[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(2): 111-121.

基金项目:德国国际量子生物学研究所专项基金资助项目
作者简介:顾樵(1947-),男(汉族),陕西省西安市人,德国国际量子生物学研究所首席科学家、深圳大学教授. E-mail: gu-qiao@gmx.de
引文:顾樵. 量子熵及其在生物光子学中的应用[J]. 深圳大学学报理工版,2013,30(2):111-121.(英文版)
更新日期/Last Update: 2013-03-19