[1]沈志萍,邬依林,苏为洲.随机间歇测量多变量连续系统的均方可检测[J].深圳大学学报理工版,2013,30(No.1(001-110)):72-77.[doi:10.3724/SP.J.1249.2013.01072]
 Shen Zhiping,Wu Yilin,et al.Mean square detectability of multi-variable continuous-time systems with random intermittent measurements[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):72-77.[doi:10.3724/SP.J.1249.2013.01072]
点击复制

随机间歇测量多变量连续系统的均方可检测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.1(001-110)
页码:
72-77
栏目:
电子与信息科学
出版日期:
2013-01-31

文章信息/Info

Title:
Mean square detectability of multi-variable continuous-time systems with random intermittent measurements
作者:
沈志萍12 邬依林13苏为洲1
1) 华南理工大学自动化科学与工程学院,广州510640
2) 新乡学院数学与信息科学系,河南 新乡 453000
3) 广东第二师范学院计算机科学系,广州 510310
Author(s):
Shen Zhiping1 2 Wu Yilin1 3 and Su Weizhou1
1) School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, P.R.China
2) Department of Mathematics, Xinxiang College, Xinxiang 453000, Henan Province, P.R.China
3) Department of Computer Science, Guangdong University of Education, Guangzhou 510310, P.R.China
关键词:
均方可检测信噪比资源分配Wonham分解容量制约 随机间歇测量
Keywords:
mean square detectability signal-to-noise ratioresource allocationWonham decomposition capacity constraints random intermittent measurements
分类号:
TP 11
DOI:
10.3724/SP.J.1249.2013.01072
文献标志码:
A
摘要:
讨论具有随机间歇测量多变量连续系统的均方可检测问题, 将随机间歇测量通道的不可靠性建模成平行乘性噪声通道, 噪声为具有伯努利分布白噪声过程. 研究了当单个通道噪声方差可调整时各平行通道噪声方差之间的权衡和整体约束问题, 指出为确保随机间歇测量下多变量连续系统均方可检测性,上述整体约束可由系统的不稳定度表示.
Abstract:
This study addresses the mean square detectability for multiple variable continuous systems with random intermittent measurements. The unreliability of random intermittent measurement channels is modeled as the parallel multiplicative Bernoulli white noise channels. The trade-off among the variances of parallel sub-channel noises and constraint from the characteristics of the systems in the problem are studied when the variances of sub-channel noises can be adjusted. The constraint is shown in terms of the instability degree of the plant to achieve the mean square detectability of multiple variable continuous systems.

参考文献/References:

[1] Zhang W H, Chen B S. On stabilizability and exact observability of stochastic systems with their applications[J]. Automatic, 2004, 40(1): 87-94.
[2] Zhang W H, Feng J, Chen B S, et al. On spectral assignment and detectability of linear stochastic systems[C]// American Control Conference. Portland(USA): IEEE Press, 2005: 386-387.
[3] Zhang W H, Zhang H S, Chen B S. Stochastic H2\H∞ control with (X,U,V)-dependent noise[C]// The 44th IEEE Conference on Decision and Control, European Control Conference. Seville(Spain): IEEE Press, 2005: 7352-7357.
[4] Damm T. Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences[M]. Berlin: Springer Verlag Press, 2004.
[5] Dragan V, Halanay A, Stoica A. A small gain theorem for linear stochastic systems[J]. System and Control Letters, 1997, 30(5): 243-251.
[6] Zhang W H, Zhang H S, Chen B S. Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion[J]. IEEE Transactions on Automatic Control, 2008, 53(7): 1630-1642.
[7] Wagenaar T J A, De Koning W L. Stability and stabilizability of chemical reactors modeled with stochastic parameters[J]. International Journal of Control, 1989, 49(1): 33-44.
[8] Kleinman D. On the stability of linear stochastic systems[J]. IEEE Transactions on Automatic Control, 1969, 14(4): 429-430.
[9] McLane P. Asymptotic stability of linear autonomous systems with state-dependent noise[J]. IEEE Transactions on Automatic Control, 1969, 14(6): 754-755.
[10] Willems J, Blankenship G. Frequency domain stability criteria for stochastic systems[J]. IEEE Transactions on Automatic Control, 1971, 16(4): 292-299.
[11] Hinrichsen D, Pritchard A J. Stability radii for systems with stochastic uncertainty and their optimization by output feedback[J]. SIAM Journal on Control and Optimization, 1996, 34(6): 1972-1998.
[12] Stephen B, Laurent E G, Eric F, et al. Linear Matrix Inequalities in System and Control Theory[M]. Society for Industrial and Applied Mathematics, Philadelphia, 1994.
[13] Yaz E. Feedback controllers for stochastic-parameter systems: relations among various stabilizability conditions[J]. Optimal Control Applications and Methods, 1988, 9(3): 325-332.
[14] Sinopoli B, Schenato L, Franceschetti M. Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.
[15] Hu S, Yan W Y. Stability robustness of networked control systems with respect to packet loss[J]. Automatica, 2007, 43(7):1243-1248.
[16] Elia N, Mitter S K. Stabilization of linear systems with limited information[J]. IEEE Transactions on Automatic Control, 2001, 46(9):1384-1400.
[17] Fu M Y, Xie L H. The sector bound approach to quantized feedback control[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711.
[18] Elia N. Remote stabilization over fading channels[J]. Systems & Control Letters, 2005, 54(3): 237-249.
[19] Braslavsky J H, Middleton R H, Freudenberg J S. Feedback stabilization over signal-to-noise ratio constrained channels[J]. IEEE Transactions on Automatic Control, 2007, 52(8):1391-1403.
[20] Elia N. When Bode meets Shannon: control- oriented feedback communication schemes[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1477-1488.
[21] You K Y, Xie L H. Minimum data rate for mean square stabilization of single input discrete systems over lossy channels[C]// The 7th International Conference on Control and Automation. Christchurch(New Zealand): IEEE Press, 2009: 1-6.
[22] Gu G, Qiu L. Networked stabilization of multi-input systems with channel resource allocation[C]//The 17th IFAC World Congress. Seoul(South Korea): IEEE Press, 2008: 625-630.
[23] Xiao N, Xie L H, Qiu L. Mean square stabilization of multi input systems over stochastic multiplica- tive channels[C]// The 48th Conference on Decision and Control. Shanghai(China): IEEE Press, 2009:6893-6898.
[24] Rong B Y, Shi L, Qiu L. Networked state estimation of MIMO systems[C]// The 12th International conference on control, automation, robotics and vision. Guangzhou(China): IEEE Press, 2012.
[25] Rong B Y, Shi L, Qiu L. State estimation over packet-dropping channels[C]// 20th international symposium on mathematical theory of networks and systems, Melbourne(Australia): IEEE Press, 2012.
[26] Callier F M. Linear System Theory[M]. New Jersey(USA): Springer-Verlag Press,2002: 191-195.
[27] Damm T. On detectability of stochastic systems[J]. Automatica, 2007, 43(5): 928-933.
[28] Horn R, Johnson C. Matrix Analysis[M]. Cambridge (England): Cambridge University Press, 1985.
[29] Sun J Q, Stochastic Dynamics and Control[M]. Newark: Elsevier Science, 2006.
[30] Zhang W H, Xie L H. Interval stability and stabilization of linear stochastic systems[J]. IEEE Transactions on Automatic Control, 2009, 54(4): 810-815.
[31] Costa O L V, Fragoso M D, Marques R P. Discrete-Time Markov Jump Linear Systems[M]. Spinger Verlag Press, 2004.

相似文献/References:

[1]徐世祥,陆小微,林庆钢,等.强场太赫兹时域光谱测量技术研究进展[J].深圳大学学报理工版,2019,36(2):193.[doi:10.3724/SP.J.1249.2019.02193]
 XU Shixiang,LU Xiaowei,LIN Qinggang,et al.Advances in intense terahertz time-domain spectrometry[J].Journal of Shenzhen University Science and Engineering,2019,36(No.1(001-110)):193.[doi:10.3724/SP.J.1249.2019.02193]

备注/Memo

备注/Memo:
2013年1月JOURNAL OF SHENZHEN UNIVERSITY SCIENCE AND ENGINEERINGJan. 2013
Received:2012-04-20;Revised:2012-10-02;Accepted:2012-12-02
Foundation:National Natural Science Foundation of China (61273109); Natural Science Foundation of Guangdong Province (S2012010008462)
Corresponding author:Professor Su Weizhou. E-mail:wzhsu@scut.edu.cn
Citation:Shen Zhiping, Wu Yilin, Su Weizhou. Mean square detectability of multi-variable continuous-time systems with random intermittent measurements[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 72-77.(in Chinese)
基金项目:国家自然科学基金资助项目(61273109);广东省自然科学基金资助项目(S2012010008462)
作者简介:沈志萍(1984-),女(汉族),河南省驻马店市人,华南理工大学博士研究生. E-mail:hsdszp@yahoo.com.cn
引文:沈志萍,邬依林, 苏为洲. 随机间歇测量多变量连续系统均方可检测[J]. 深圳大学学报理工版,2013,30(1):72-77.
更新日期/Last Update: 2013-01-20