[1]唐文伟,陈晓颖,张旻,等.氧化铌掺杂PbO2电极的制备及降解分散蓝B[J].深圳大学学报理工版,2013,30(No.1(001-110)):42-47.[doi:10.3724/SP.J.1249.2013.01042]
 Tang Wenwei,Chen Xiaoying,Zhang Min,et al.Preparation of Nb2O5 doped PbO2 electrode and its degradation of disperse blue B[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):42-47.[doi:10.3724/SP.J.1249.2013.01042]
点击复制

氧化铌掺杂PbO2电极的制备及降解分散蓝B()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.1(001-110)
页码:
42-47
栏目:
环境与能源
出版日期:
2013-01-31

文章信息/Info

Title:
Preparation of Nb2O5 doped PbO2 electrode and its degradation of disperse blue B
作者:
唐文伟1陈晓颖1张旻2苏兴治1肖耀明1曾新平2
1) 同济大学化学系,上海 200092
2) 同济大学生命科学与技术学院,上海 200092
Author(s):
Tang Wenwei1 Chen Xiaoying1 Zhang Min2 Su Xingzhi1 Xiao Yaoming1 and Zeng Xinping2
1) Department of Chemistry, Tongji University, Shanghai 200092, P.R.China
2) School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R.China
关键词:
电化学钛基PbO2电极电沉积氧化铌分散蓝B氧化难降解有机废水染料废水
Keywords:
electrochemistry Ti-PbO2 electrode electrodeposition Nb2O5 disperse blue oxidation refractory organic waster water dyeing waster water
分类号:
TQ 150
DOI:
10.3724/SP.J.1249.2013.01042
文献标志码:
A
摘要:
采用电沉积法制备氧化铌掺杂的钛基PbO2电极,通过X射线衍射、扫描电镜和电化学工作站进行表征.结果表明,掺杂氧化铌改变了沉积PbO2的晶型分布,电极表面出现α-PbO2晶型,提高了镀层与基体的结合度及电子传递效率;同时晶体尺寸略有增大,排列规整均匀.氧化铌最佳掺杂质量浓度为3.5 g/L,改性电极的析氧电位上升到1.523 V,阶跃氧化电流达到0.155 9 A,强化寿命延长到702 min,电催化性能和稳定性均有明显提升.利用所制备改性电极降解分散蓝B的最佳降解条件:溶液pH值为2,电解质NaCl浓度为0.7 mol/L,电流密度为40 mA/cm2,1 h后脱色率可达89%,脱色动力学可用拟2级反应描述.
Abstract:
The Nb2O5/PbO2 electrode based on Ti substrate was prepared by electrodeposition method. Properties of the electrode were investigated by XRD, SEM and electrochemical measurements. The results showed that the Nb2O5 doping led to transformation of crystalline form, and α- PbO2 was formed in the surface of the anode, which improved the binding degree between the coating and substrate as well as efficiency of electron-transfer. It also led to the increase of the crystallite size and the particles were arranged regularly and uniformly. When the optimum doping content of Nb2O5 was 3.5 g/L, oxygen evolution potential increased to 1.523 V, step current was 0.1559 A, and strengthening lifetime reached 702 min. Compared with PbO2 electrode, Nb2O5/PbO2 electrode significantly enhanced electrocatalytic performance and stability. The modified electrode was effective in degradation of disperse blue B. The best degradation conditions were: pH=2; concentration of electrolyte c(NaCl)=0.7 mol/L; current density was 40 mA/cm2. After 1 h, the decoloration rate of disperse blue B reached up to 89%. The apparent kinetics of the decolorization reaction followed a second-order behavior.

参考文献/References:

[1] Aquino J M, Pereira G F, Rocha R C, et al. Electrochemical degradation of a real textile effluent using boron-doped diamond or beta-PbO2 as anode[J]. Journal of Hazardous Materials, 2011, 192(3): 1275- 1282.
[2] Leonardo S A, Thiago T T, Diogo L S, et al. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the reactive orange 16 dye[J]. Electrochimica Acta, 2009, 54(7): 2024-2030.
[3] Wang Y, Shen Z, Li Y, et al. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution[J]. Chemosphere, 2010, 79(10): 987-996.
[4] Zhao G H, Zhang Y G, Lei Y Z, et al. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability[J]. Environment Science and Technology, 2010, 44(5): 1754-1759.
[5] Yeo I H, Wen S, Mho S I. Effect of interfacial oxides on the electrochemical activity of lead dioxide film electrodes on a Ti substrate[J]. Analytical Science, 2010, 26(1): 39-44.
[6] Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism[J]. Environmental Science and Technology, 2005, 39(1): 363-370.
[7] Gong Xiaozhong, Tian Peng, Zhou Zhi, et al. Electrodeposition and characterization of rare-earth element filled thermoelectric material CoSb3Smx and CoSb3Prx[J]. Journal of Shenzhen University Science and Engineering, 2010, 27(2): 217-223.(in Chinese)
龚晓钟,田鹏,周智, 等. 稀土填充热电材料CoSb3Smx和CoSb3Prx的制备及表征[J]. 深圳大学学报理工版, 2010, 27(2): 217-223.
[8] Kong J T, Shi S Y, Kong L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides[J]. Electrochimica Acta, 2007, 53(7): 2048-2054.
[9] Duan X Y, Ma F, Yuan Z X, et al. Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol[J]. Electrochimica Acta, 2012, 76(1): 333-343.
[10] Aravind K C, Frederic S, Montse C C, et al. Doping a TiO2 photoanode with Nb5+ to enhanced transparency and charge collection efficiency in dye-sensitized solar cells[J]. Journal of Physical Chemistry C, 2010, 114(37): 15849-15856.
[11] Bharat N P, Naik D B, Shrivastava V S. Photocatalytic degradation of hazardous Ponceau-S dye from industrial wastewater using nanosized niobium pentoxide with carbon[J]. Desalination, 2011, 269(1/2/3): 276- 283.
[12] Ladera R, Finocchio E, Rojas S, et a1. Supported niobium catalysts for methanol dehydration to dimethyl ether: FTIR studies of acid properties[J]. Catalysis Today, 2012, 192(1): 136-143.
[13] Stosic D, Bennici S, Rakic V, et a1. CeO2-Nb2O5 mixed oxide catalysts: preparation, characterization and catalytic activity in fructose dehydration reaction[J]. Catalysis Today, 2012, 192(1): 160-168.
[14] Zhao G H, Cui X, Liu M C, et a1. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J]. Environmental Science and Technology, 2009, 43(5): 1480-1486.
[15] Zhang Zhaoxian. Itanium Electrode Engineering[M]. Beijing: Metallurgical Industry Press, 2000: 172-194.(in Chinese)
张招贤. 钛电极工学[M]. 北京:冶金工业出版社, 2000: 172-194.
[16] He Jie, Fan Yining, Qiu Jinheng, et al. Dispersion state and catalytic properties of niobia species on the surface of Nb2O5/TiO2 catalysts Nb2O5/TiO2[J]. Acta Chimica Sinica, 2004, 62(14): 1311-1317.(in Chinese)
何杰, 范以宁, 邱金恒, 等. Nb2O5/TiO2催化剂表面铌氧物种的分散状态和催化性能[J]. 化学学报, 2004, 62(14): 1311-1317.
[17] Fleszar B, Ploszynska J. An attempt to define benzene and phenol electrochemical oxidation mechanism[J]. Electrochimica Acta, 1985, 30(1): 31-42.

相似文献/References:

[1]龚晓钟,田鹏,周智,等.稀土填充热电材料CoSb3Smx和CoSb3Prx的制备及表征[J].深圳大学学报理工版,2010,27(2):217.
 GONG Xiao-zhong,TIAN Peng,ZHOU Zhi,et al.Electrodeposition and characterization of rare-earth element filled thermoelectric material CoSb3Smx and CoSb3Prx[J].Journal of Shenzhen University Science and Engineering,2010,27(No.1(001-110)):217.
[2]刘剑洪,吴双泉,何传新,等.碳纳米管和碳微米管的结构、性质及其应用[J].深圳大学学报理工版,2013,30(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2013.01001]
 Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):1.[doi:10.3724/SP.J.1249.2013.01001]

备注/Memo

备注/Memo:
Received:2011-09-15;Revised:2012-10-12;Accepted:2012-10-12
Foundation:National Natural Science Foundation of China (21277098); Natural Science Foundation of Shanghai (10ZR1432500)
Corresponding author:Associate professor Tang Wenwei. E-mail: tangww@tongji.edu.cn
Citation:Tang Wenwei, Chen Xiaoying, Zhang Min, et al. Preparation of Nb2O5 modified PbO2 electrode and degradation on disperse blue B[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 42-47.(in Chinese)
基金项目:国家自然科学基金资助项目(21277098);上海市科委自然科学基金资助项目 (10ZR1432500)
作者简介:唐文伟(1968-),男(汉族),湖南省邵东县人,同济大学副教授、博士. E-mail: tangww@tongji.edu.cn
引文:唐文伟, 陈晓颖, 张旻, 等. 氧化铌掺杂PbO2电极的制备及其降解分散蓝B[J]. 深圳大学学报理工版,2013,30(1):42-47.
更新日期/Last Update: 2013-01-20