[1]刘剑洪,吴双泉,何传新,等.碳纳米管和碳微米管的结构、性质及其应用[J].深圳大学学报理工版,2013,30(No.1(001-110)):1-11.[doi:10.3724/SP.J.1249.2013.01001]
 Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):1-11.[doi:10.3724/SP.J.1249.2013.01001]
点击复制

碳纳米管和碳微米管的结构、性质及其应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第30卷
期数:
2013年No.1(001-110)
页码:
1-11
栏目:
材料科学
出版日期:
2013-01-31

文章信息/Info

Title:
Structure, property and application of carbon nanotubes and carbon microtubes
作者:
刘剑洪吴双泉何传新卓海涛朱才镇李翠华张黔玲
深圳市功能高分子重点实验室,深圳大学化学与化工学院,深圳 518060
Author(s):
Liu Jianhong Wu Shuangquan He Chuanxin Zhuo Haitao Zhu Caizhen Li Cuihua and Zhang Qianling
Shenzhen Key Laboratory of Functional Polymers, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
电化学碳纳米管碳微米管石墨烯量子导线锂离子电池超级电容器储氢材料化学修饰
Keywords:
electrochemistry carbon nanotubes(CNTs) carbon microtubes(CMTs) graphene quantum wires lithium-ion battery supercapacitor hydrogen storage material chemical modification
分类号:
O 613
DOI:
10.3724/SP.J.1249.2013.01001
文献标志码:
A
摘要:
评述碳纳米管和碳微米管的结构、性质及其应用,指出碳纳米管可看作是石墨烯片按照一定的角度卷曲而成的纳米级无缝管状物,根据层数不同可分为多壁碳纳米管和单壁碳纳米管. 由于碳纳米管管壁中的碳原子采用的是sp2杂化,因此碳纳米管沿轴向具有高模量和高强度,可用于增强复合材料的力学性能;而碳纳米管圆筒状弯曲会导致量子限域和σ-π再杂化,这种再杂化结构特点以及π电子离域结构赋予了碳纳米管特异的光、电、磁、热、化学和力学性质;碳纳米管的管腔内部是纳米级中空结构,可作为纳米级分子反应器和存储容器. 但碳纳米管的管径尺寸太小、表面缺陷多、团聚严重等问题一直影响着碳纳米管在实际中的应用. 而碳微米管的出现弥补了其不足,碳微米管具有与碳纳米管相似的管状结构,在保持纳米级管壁厚度的同时,能拥有微米级的管径,巨大的管壁外表面,相当于一张微米级的石墨烯网状膜,因此碳微米管能同时拥有碳纳米管和石墨烯的独特物理和化学性能. 通过对碳微米管各项性能的研究表明,碳微米管的管壁具有规整的石墨烯结构,管腔具有微米级中空管结构,有较高的比表面积,电学和化学性能良好.利用其优良的电学性能,它们能较好地应用在量子导线和晶体管阵列;同时利用其优良的化学和电化学性能,也能广泛用于锂离子电池、超级电容器和储氢材料.
Abstract:
The carbon nanotube (CNTs) can be considered equivalent to a graphene sheet rolled into a seamless tube capped on both ends. CNTs can be divided into multi-walled carbon canotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) according to the number of graphene layers. CNTs have high modulus and tensile along the axial because the tube wall of CNTs is composed of the sp2 hybridized orbitals hexagonal carbon atoms network, which can be used to reinforce the mechanical properties of the composite material. The cylindrical structure of CNTs will cause the quantum confinement and σ-π rehybridization. This structural feature of the rehybridization and electron confinement can give carbon nanotubes unique optical, electronic, magnetic, thermal, chemical and mechanical properties. CNTs with the hollow tubular structure also can be used as a reactor and storage container. However, problems arise from the small size of the pipe diameter; surface deficiency and serious agglomeration badly restrict the development of CNTs. The appearance of CMTs makes up for the shortages of CNTs. CMTs have the same tubular structure as CNTs. CMTs have a micro-scale pipe diameter and a large outside surface for a tube wall while maintaining a nano-scale tube wall thickness, which is equivalent to a micro-scale graphene membrane. So, CMTs possess the unique physical and chemical properties of both the CNTs and graphene. A comprehensive study of the performance of the CMTs shows that the tube wall of the CMTs has a well-defined structure of graphene, micro-scale hollow structure lumen, large specific surface area and favorable electrical and mechanical properties. With superior electrical properties, CMTs can be applied in quantum wires and transistor array. At the same time, because of their excellent chemical and electrochemical properties, they can also be applied in lithium-ion batteries, supercapacitors and hydrogen storage materials, etc.

参考文献/References:

[1] Richard E Smalley. Discovering the fullerenes[J]. Reviews of Modern Physics, 1997,69(3):723-730.
[2] Ajayan P M. Nanotubes from carbon[J]. Chemical Reviews, 1999, 99(7):1787-1799.
[3] Iijima S. Helical microtubeles of graphitic carbon[J]. Nature, 1991, 354:56-58.
[4] Raymond M Reilly, Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine[J]. Journal of Nuclear Medicine, 2007, 48(7):1039-1042.
[5] Jean-Christophe Charlier, Sumio Iijima. Growth mechanisms of carbon nanotubes[J]. Topics in Applied Physics, 2001,80:55-81.
[6] Daenen M, Fouw R D de, Hamers B. The wondrous world of carbon nanotubes[Z]. Eindhoben University of Technology, 2003.
[7] Sumio Iijima, Toshinari Ichihashi. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363:603-605.
[8] Bethune D S, Kiang C H, Vries M S de, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993, 363:605-607.
[9] Kenji Hata, Don N Futaba, Kohei Mizuno, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364.
[10] Ray H Baughman, Anvar A Zakhidov, Walt A de Heer. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582):787-792.
[11] Mark C Hersam. Progress towards monodisperse single-walled carbon nanotubes[J]. Nature Nanotechnology, 2008, 3:387-394.
[12] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273(5274):483-487.
[13] Ajayan P M, Sumio Lijima. Capillarity induced filling of carbon nanotubes[J]. Nature, 1993, 361(28):333-334.
[14] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implications for filling[J]. Nature, 1993, 362: 522-525.
[15] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994, 372(10): 159-162.
[16] Liu Jie, Andrew G Rinzler, Dai Hongjie, et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
[17] Mueller A, Amsharov K Y, Jansen M. Synthesis of end-cap precursor molecules for (6, 6) armchair and (9,0)zig-zag single-walled carbon nanotubes[J]. Tetrahedron Letters, 2010,51(24): 3221-3225.
[18] Zhen Yao, Henk W Ch Postma, Leon Balents, et al. Carbon nanotube intramolecular junctions[J].Nature, 1999, 402(6759): 273-276.
[19] Andreas Hirsch. Functionalization of single-walled carbon nanotubes[J]. Angewandte Chemie International Edition, 2002, 41(11):1853-1859.
[20] Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions[J]. Accounts of Chemical Research, 2002, 35(12): 1087-1095.
[21] Alberto Bianco, Kostas Kostarelos, Maurizio Prato. Applications of carbon nanotubes in drug delivery[J]. Current Opinion in Chemical Biology, 2005, 9(6):674-679.
[22] Albert G Nasibulin, Peter V Pikhitsa, Hua Jiang, et al. A novel hybrid carbon material[J]. Nature Nanotechnology, 2007,2(3):156-161.
[23] Tang Z K, Zhang Lingyun, Wang N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes[J]. Science, 2001, 292(5526):2462-2465.
[24] Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors[J]. Applied Physics Letters, 1998, 73(17): 2447-2449.
[25] Hyongsok T Soh, Calvin F Quate, Alberto F Morpurgo, et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(5): 627-629.
[26] Savas Berber, Young-Kyun Kwon, David Tománek. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616.
[27] Wen Qian, Qian Weizhong, Nie Jingqi, et al. 100 mm long, semiconducting triple-walled carbon nanotubes [J]. Advanced Materials, 2010, 22(16):1867-1871.
[28] Charan Masarapu, Venkatachalam Subramanian, Zhu Hongwei, et al. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries[J]. Advanced Functional Materials, 2009, 19(7):1008-1014.
[29] Chunming Niu, Enid K Sichel, Robert Hoch, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70(11):1480-1482.
[30] Dillon A C, Jones K M, Bekkedahl T A,et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386: 377-379.
[31] Wen Guangwu, Yu Hongming, Huang Xiaoxiao. Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method[J]. Carbon, 2011, 49(20): 4067-4069.
[32] Hu Junqing, Bando Yoshio, Xu Fangfang, et al. Growth and field-emission properties of crystalline, thin-walled carbon microtubes[J]. Advanced Materials, 2004, 16(2):153-156.
[33] Xu Liqiang, Zhang Wanqun, Ding Yanwei, et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes[J]. The Journal of Physical Chemistry B, 2004, 108(30):10859-10862.
[34] Sunkara M K, Meduri P, Kim J H, et al. Thin-walled carbon microtubes as high-capacity and high-rate anodes in lithium-ion batteries[J]. Journal of Physical Chemistry C, 2010, 114(23):10621-10627.
[35] Yu Hongming, Huang Xiaoxiao, Wen Guangwu, et al. A pressure enhanced CVD method for large scale synthesis of carbon microtubes and their mechanical properties[J]. Materials Letters, 2011, 65(12):2004-2006.
[36] Liu Jianhong. A preparation method of carbon nanotubes and carbon microtubes: China, 201110086492.7[P]. 2011-04-07[2012-12-28].(in Chinese)
刘剑洪. 一种碳纳米管和碳微米管的制备方法:中国,201110086492.7[P]. 2011-04-07[2012-12-28].
[37] Liu Jianhong. A preparation method of grapheme-like doped cathode materials for lithium ion batteries: China, 201010618690.9[P]. 2010-12-31[2012-12-28].(in Chinese).
刘剑洪. 一种类石墨烯掺杂锂离子电池正极材料的制备方法:中国,201010618690.9[P]. 2010-12-31[2012-12-28].

相似文献/References:

[1]曹慧群,周晓明,刘剑洪,等.氧化铕组装碳纳米管的制备和表征[J].深圳大学学报理工版,2007,24(1):54.
 CAO Hui-qun,ZHOU Xiao-ming,LIU Jian-hong,et al.The preparation and characteration of carbon nanotubes assembled with europium oxide[J].Journal of Shenzhen University Science and Engineering,2007,24(No.1(001-110)):54.
[2]曹慧群,李上娇,胡惠媛,等.聚苯胺/碳纳米管/Ni0.5Zn0.5Fe2O4制备及其磁性能[J].深圳大学学报理工版,2008,25(1):35.
 CAO Hui-qun,LI Shang-jiao,HU Hui-yuan,et al.Preparation and magnetic property of polyaniline containing carbon nanotubes and Ni0.5Zn0.5Fe2O4[J].Journal of Shenzhen University Science and Engineering,2008,25(No.1(001-110)):35.
[3]龚晓钟,田鹏,周智,等.稀土填充热电材料CoSb3Smx和CoSb3Prx的制备及表征[J].深圳大学学报理工版,2010,27(2):217.
 GONG Xiao-zhong,TIAN Peng,ZHOU Zhi,et al.Electrodeposition and characterization of rare-earth element filled thermoelectric material CoSb3Smx and CoSb3Prx[J].Journal of Shenzhen University Science and Engineering,2010,27(No.1(001-110)):217.
[4]曹慧群,林碧玉,张晟诘,等.水热法制备锰锌铁氧体/碳纳米管磁性材料[J].深圳大学学报理工版,2013,30(No.1(001-110)):12.[doi:10.3724/SP.J.1249.2013.01012]
 Cao Huiqun,Lin Biyu,Zhang Shengjie,et al.Hydrothermal synthesis carbon nanotubes coating with Mn0.5Zn0.5Fe2O4 magnetic materials[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):12.[doi:10.3724/SP.J.1249.2013.01012]
[5]唐文伟,陈晓颖,张旻,等.氧化铌掺杂PbO2电极的制备及降解分散蓝B[J].深圳大学学报理工版,2013,30(No.1(001-110)):42.[doi:10.3724/SP.J.1249.2013.01042]
 Tang Wenwei,Chen Xiaoying,Zhang Min,et al.Preparation of Nb2O5 doped PbO2 electrode and its degradation of disperse blue B[J].Journal of Shenzhen University Science and Engineering,2013,30(No.1(001-110)):42.[doi:10.3724/SP.J.1249.2013.01042]
[6]倪卓,曾茵茵,周方宇,等.碳纳米管对有机相变储能材料的影响[J].深圳大学学报理工版,2016,33(3):241.[doi:10.3724/SP.J.1249.2016.03241]
 Ni Zhuo,Zeng Yinyin,Zhou Fangyu,et al.Effect of carbon nanotubes on organic phase change materials[J].Journal of Shenzhen University Science and Engineering,2016,33(No.1(001-110)):241.[doi:10.3724/SP.J.1249.2016.03241]
[7]贵大勇,刘灿群,宗阳阳,等.液晶功能化碳纳米管有机硅复合材料的制备与性能[J].深圳大学学报理工版,2018,35(3):278.[doi:10.3724/SP.J.1249.2018.03278]
 GUI Dayong,LIU Canqun,ZONG Yangyang,et al.Preparation and characterization of liquid crystal functionalized MWCNTs-organic silicone nanocomposites[J].Journal of Shenzhen University Science and Engineering,2018,35(No.1(001-110)):278.[doi:10.3724/SP.J.1249.2018.03278]

备注/Memo

备注/Memo:
Received:2012-12-28;Accepted:2013-01-09
Foundation:National Basic Research Program(2011CB605603,2011CB605605)
Corresponding author:Professor Liu Jianhong. E-mail: liujh@szu.edu.cn
Citation:Liu Jianhong, Wu Shuangquan, He Chuanxin, et al. Structure, property and application of carbon nanotubes and carbon microtubes[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 1-11.(in Chinese)
基金项目:国家重点基础研究发展计划资助项目(2011CB605603,2011CB605605)
作者简介:刘剑洪(1964-),男(汉族),湖南省益阳市人,深圳大学教授、博士生导师. E-mail: liujh@szu.edu.cn
引文:刘剑洪,吴双泉,何传新,等. 碳纳米管和碳微米管的结构,性质及其应用[J]. 深圳大学学报理工版,2013,30(1):1-11.
更新日期/Last Update: 2013-01-20