[1]欧阳超常,陈菊芳,彭建华.非等同广义离散超混沌系统的多同步研究[J].深圳大学学报理工版,2012,29(No.3(189-282)):232-246.[doi:10.3724/SP.J.1249.2012.03242]
 OUYANG Chao-chang,CHEN Ju-fang,and PENG Jian-hua.Multiple synchronization of two non-identical generalized hyperchaotic systems[J].Journal of Shenzhen University Science and Engineering,2012,29(No.3(189-282)):232-246.[doi:10.3724/SP.J.1249.2012.03242]
点击复制

非等同广义离散超混沌系统的多同步研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第29卷
期数:
2012年No.3(189-282)
页码:
232-246
栏目:
电子与信息科学
出版日期:
2012-05-21

文章信息/Info

Title:
Multiple synchronization of two non-identical generalized hyperchaotic systems
作者:
欧阳超常1陈菊芳2彭建华1
1) 深圳大学物理科学与技术学院,深圳 518060
2) 东北师范大学物理学院,长春 130024
Author(s):
OUYANG Chao-chang1 CHEN Ju-fang2 and PENG Jian-hua1
1) College of Physics and Technology, Shenzhen University, Shenzhen 518060, P.R.China
2) College of Physics, Northeast Normal University, Changchun 130024, P.R.China
关键词:
高维混沌广义离散超混沌系统单路驱动信号非等同系统多同步态电路实验
Keywords:
higher-dimensional chaos generalized discrete-time hyperchaotic system single driving signal non-identical system multiple synchronization circuit experiment
分类号:
O 415.5;O 415.6
DOI:
10.3724/SP.J.1249.2012.03242
文献标志码:
A
摘要:
提出用广义依农映像和广义立方映像两个离散超混沌系统,在单向驱动控制信号的作用下,构建了非等同超混沌同步的驱动-响应系统,根据离散系统局域稳定性理论, 确定这一系统在不同维数下出现完全同步和完全反同步、广义同步和广义反同步的解析条件,设计和构建非等同超混沌系统的实验电路,依据理论分析得到的参数范围,通过数值计算和测量实验电路,所得到的结果均与理论分析的结果相符合.研究结果表明,恰当选择单路驱动控制信号,也可实现非等同超混沌离散系统多种类型的同步.
Abstract:
Multiple synchronization phenomena between the generalized Hénon maps and the generalized cubic map non-identical discrete-time hyperchaotic systems were observed. These two systems were unidirectionally coupled with the drive-response synchronization scheme by a single driving signal. By using the local stability theory of discrete systems,the analytical conditions of the complete synchronization, anti-synchronization and generalized synchronization for the systems in different dimensions were derived respectively. The experimental circuits for both the generalized Hénon maps and the generalized cubic map and several observed numerical simulations are also designed. Results indicate consistency with the theoretical analysis for the synchronization.

参考文献/References:

[1] Pecora L M,Carroll T L.Synchronization in chaotic syst-ems[J].Physical Review Letters,1990,64(8): 821-82.
[2] Ravoori B,Cohen A B,Setty A V,et al. Adaptive synchronization of coupled chaotic oscillators[J].Phy-sical Review E,2009,80(5): 056205.
[3] ZHANG Yin-pin,SUN Ji-tao.Chaotic synchronization and anti-synchronization based on suitable separation[J].Physics Letter A,2004,330(6): 442-447.
[4] Kocarev L,Parlitz U.Generalized synchronization,p-redictability,and equivalence of uniderctionally coupl-ed dynamical systems[J].Physical Review Letters, 1996,76(11): 1816-1819.
[5] Alvarez-Llamoza O,Cosenza M G.Generalized sync-hronization of chaos in autonomous systems[J]. Physi-cal Review E,2008,78(4): 046216.
[6] Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Physics Reports, 2002,366(1/2): 1-101.
[7] Aviad Y,Reidler I,Kinzel W,et al.Phase synchronization in mutually coupled chaotic diode lasers[J].Physical Review E,2008,78(2): 025204.
[8] Rosenblum M G,Pikovsky A S,Kurths J.From phase to lag synchronization in coupled chaotic oscillators[J].Physical Review Letters,1997,78(22): 4193-4196.
[9] Sivaprakasam S,Shahverdiev E M,Spencer P S,et al.Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback[J].Physical Review Letters,2001,87(15): 154101.
[10] Pyragas K, Pyragien T. Coupling design for a longterm anticipating synchronization of chaos[J].Physical Review E,2008,78(4): 046217 .
[11] Hendrik Richter.The generalized Hénon maps: examples for higher-dimensional chaos[J]. International Journal of Bifurcation and Chaos,2001,12(6): 1371-1384.
[12] ZHANG Xiao-ming,WANG He,PENG Jian-hua.A generalized cubic map[J]. Journal of Shenzhen University Science and Engineering,2009,26(3 ): 327-330.(in Chinese)
张晓明,王赫,彭建华.一个广义立方映象系统[J].深圳大学学报理工版,2009,26(3): 327-330.
[13] PENG Jian-hua,DING Er-jiang,DING Ming-zhou, et al. Sychronizing hyperchaos with a scalar transmitted signal[J].Physical Review Letters,1996,76(10): 904-907.(in Chinese)
彭建华,丁鄂江,丁明洲,等.用单路发送信号同步超混沌[J].物理评论快报, 1996,76(6): 904-907.
[14] Grassi G, Mascolo S.Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal[J]. IEEE Transations on Circuits and Systems 1: Fundammental Theory and Application,1997,44(10): 1011-1014.
[15] LIU Bing-zheng, PENG Jian-hua.Nonlinear Dynamics[M]. Beijing: Higher Education Press,2004: 493-534.(in Chinese)
刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004: 493-534.
[16] Katsuhiko Ogata.Discrete-time control systems[M]. 2 edition.Beijing: China Machine Press,2004: 185-186.

备注/Memo

备注/Memo:
Received:2011-04-15;Revised:2011-11-08;Accepted:2012-04-10
Foundation:National Natural Science Foundation of China(70571053)
Corresponding author:Professor PENG Jian-hua. E-mail: pengjh173@163.com
Citation:OUYANG Chao-chang,CHEN Ju-fang,and PENG Jian-hua. Multiple synchronization of two non-identical generalized hyperchaotic systems[J]. Journal of Shenzhen University Science and Engineering, 2012, 29(3): 242-246.(in Chinese)
基金项目:国家自然科学基金资助项目(70571053)
作者简介:欧阳超常(1986-),女(汉族),广东省高州市人,深圳大学硕士研究生. E-mail: ouyang_phy@163.com
引文:欧阳超常,陈菊芳,彭建华. 非等同广义离散超混沌系统的多同步研究[J]. 深圳大学学报理工版,2012,29(3):242-246.
更新日期/Last Update: 2012-05-28