[1]刘大有,董婥,王生生.基于矩形代数和公共模式方法的相似图像检索[J].深圳大学学报理工版,2012,29(No.2(095-188)):100-106.[doi:10.3724/SP.J.1249.2012.02100]
 LIU Da-you,DONG Chuo,and WANG Sheng-sheng.An improved similarity retrieval of images based on CPM and rectangle algebra[J].Journal of Shenzhen University Science and Engineering,2012,29(No.2(095-188)):100-106.[doi:10.3724/SP.J.1249.2012.02100]
点击复制

基于矩形代数和公共模式方法的相似图像检索()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第29卷
期数:
2012年No.2(095-188)
页码:
100-106
栏目:
电子与信息科学
出版日期:
2012-03-23

文章信息/Info

Title:
An improved similarity retrieval of images based on CPM and rectangle algebra
作者:
刘大有董婥王生生
吉林大学计算机科学与技术学院,长春 130012
Author(s):
LIU Da-you DONG Chuo and WANG Sheng-sheng
College of Computer Science and Technology, Jilin University, Changchun 130012, P.R.China
关键词:
数据挖掘基于内容的图像检索空间关系相似性图像检索矩形代数语义检索最小边界矩形 模式识别
Keywords:
data mining content-based image retrieval spatial relationship similarity retrieval rectangle algebra semantic retrieval minimum bounding rectangle pattern recognition
分类号:
TP 39;TP 37
DOI:
10.3724/SP.J.1249.2012.02100
文献标志码:
A
摘要:
指出了图像检索中公共模式方法(common pattern method,CPM)所建立的type-i公共子图无法精确描述区域间的空间拓扑关系.研究采用矩形代数表示CPM中区域间的空间拓扑关系,得到了拓扑表达更精确的相似性图像检索算法(SRRA).该算法将对象抽象为最小边界矩形,采用矩形代数描述对象间的二维空间关系,构建基于矩形代数的相似图,并从中寻找最大相似对象集合.实验结果表明,SRRA不仅在效率上优于基于CPM的算法,且检索效果更符合用户要求.
Abstract:
The common pattern method (CPM) is one of the excellent algorithms among state of the art similarity image retrieval methods. However, the type-i rule using in CPM is unable to exactly distinguish the topological relationships between areas. By applying rectangle algebra to CPM, a novel similarity retrieval by rectangle algebra(SRRA) was proposed. SRRA abstracts an object into a minimum bounding rectangle, uses rectangle algebra to express the 2D space relationship between objects, constructs similarity graphs based on rectangle algebra, and obtains a maximum similar objects set. The experimental results show that SRRA performs better than CPM with respect to the time consumed and the precision of retrieval results.

参考文献/References:

[1] Datta R, Joshi D, LI Jia, et al. Image retrieval: ideas, influences, and trends of the new age[J]. ACM Computing Surveys, 2008, 40(2): 1-60.
[2] Gudivada V N, Raghavan V V. Design and evaluation of algorithms for image retrieval by spatial similarity[J]. ACM Transactions on Information Systems, 1995, 13(2): 115-144.
[3] El-Kwae E A, Kabuka M R. A robust framework for content-based retrieval by spatial similarity in image databases[J]. ACM Transactions on Information Systems, 1999, 17(2): 174-198.
[4] WANG Ying-hong. Image indexing and similarity retrieval based on spatial relationship model[J]. Information Sciences, 2003, 154(1/2): 39-58.
[5] YIN Peng-yeng, LIU Chin-wen. A new relevance feedback technique for iconic image retrieval based on spatial relationships[J]. The Journal of Systems and Software, 2009, 82(4): 685-696.
[6] Hsieh Shu-Ming, Hsu Chiun-Chieh. Retrieval of images by spatial and object similarities[J]. Information Processing and Management, 2008, 44(3): 1214-1233.
[7] Hsieh Shu-Ming, Hsu Chiun-Chieh. Graph-based representation for similarity retrieval of symbolic images[J]. Data and Knowledge Engineering, 2008, 65(3): 401-418.
[8] Chiang J Y, Cheng Shuenn-ren, Huang Shuenn-Reng, et al. Multiple-instance image database retrieval by spatial similarity based on interval neighbor group[C]// Proceedings of the ACM International Conference on Image and Video Retrieval CIVR’10. Xi’an(China): ACM Press, 2010: 135-142.
[9] Wang Hui-hui, Mohamad Dzulkifli, Lsmail N A. Semantic gap in CBIR: automatic objects spatial relationships semantic extraction and representation[J]. International Journal of Image Processing, 2010, 4(3): 192-204.
[10] Rezaei-Kalantari Kimia, Eftekhari-Moghadam A M. Symbolic image indexing and retrieval by spatial similarity: a new approach based on multi-dimensional B+ tree[C]// The 4th International Conference on New Trends in Information Science and Service Science(NISS). Gyeongju(Korea):[s.n.], 2010: 145-152.
[11] Allen J F. Maintaining knowledge about temporal intervals[J]. Communications of the ACM, 1983, 26(11): 832-843.
[12] Balbiani P, Condotta J F, L Del Cerro L F. A new tractable subclass of the rectangle algebra[C]// Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco(USA): Morgan Kaufmann Publishers, 1999: 442-447.
[13] CHEN Juan. Research on Spatial Directional Relation Models and Integrative Reasoning of Multi-aspect Spatial Relations[D]. Changchun: Jilin University, 2011.(in Chinese)
陈娟. 空间方位关系模型及多方面空间关系结合推理的研究[D]. 长春: 吉林大学, 2011.
[14] DONG Yi-qun. Research on Some Problems of Qualitative Spatial Direction Relations Modeling[D]. Changchun: Jilin University, 2011.(in Chinese)
董轶群. 定性空间方向关系建模中若干问题研究[D]. 长春: 吉林大学, 2011.
[15] Hoàng Nguyen Vu, Gouet-Brunet Valérie, Rukoz Marta. A cartography of spatial relationships in a symbolic image database[J]. Proceedings of the 14th International Conference on Computer Analysis of Images and Patterns: Part I. Berlin: Springer-Verlag, 2011, 6854: 377-385.
[16] Lee Suh-yin, Shan Man-kwan, YANG Wei-pang. Similarity retrieval of iconic image database[J]. Pattern Recognition, 1989, 22(6): 675-682.
[17] LIU Lin, LI Ren-fa, LI Zhong-sheng, et al. Research on relevance feedback in contrent-based image retrieval[J]. Application Research of Computers, 2009, 26(7): 2427-2431.(in Chinese)
刘琳, 李仁发, 李仲生, 等. 基于内容图像检索中的相关反馈技术研究[J]. 计算机应用研究, 2009, 26(7): 2427-2431.
[18] XU Xiang-li, ZHANG Li-biao, LIU Xiang-dong, et al. Image retrieval relevance feedback algorithm based on particle swarm optimization[J]. ACTA Electronica Sinica, 2010, 38(8): 1935-1940.(in Chinese)
许相莉, 张利彪, 刘向东, 等. 基于粒子群的图像检索相关反馈算法[J]. 电子学报, 2010, 38(8): 1935-1940.
[19] YIN Peng-yeng, LIU Chin-wen. A new relevance feedback technique for iconic image retrieval based on spatial relationships[J]. The Journal of Systems and Software, 2009, 82(4): 685-696.
[20] XING Shi-mei. Research on Consistency Techniques in Constraint Satisfaction Problems[D]. Changchun: Jilin University, 2011.(in Chinese)
邢士美. 约束满足问题中相容技术的研究[D]. 长春: 吉林大学, 2011.

相似文献/References:

[1]明仲,林朝哲,蔡树彬.并行PSVM算法及其在入侵检测中的应用[J].深圳大学学报理工版,2010,27(3):327.
 MING Zhong,LIN Chao-zhe,and CAI Shu-bin.Parallel proximal support vector machine and its application in intrusion detection[J].Journal of Shenzhen University Science and Engineering,2010,27(No.2(095-188)):327.
[2]陆楠,杜文峰,梁正平.基于FP-tree目录分割自适应算法[J].深圳大学学报理工版,2011,28(No.4(283-376)):341.
 LU Nan,DU Wen-feng,and LIANG Zheng-ping.A self-adaptive algorithm for the problem of catalog segmentation based on FP-tree[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(095-188)):341.
[3]王娜,李霞,徐红英.社会网络分析之社区发现研究[J].深圳大学学报理工版,2014,31(1):35.[doi:10.3724/SP.J.1249.2014.01035]
 Wang Na,Li Xia,and Xu Hongying.Research on community detection in social network[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(095-188)):35.[doi:10.3724/SP.J.1249.2014.01035]
[4]陆楠,陆春一,周春光.快速发现关联规则挖掘算法的并行化方法[J].深圳大学学报理工版,2005,22(4):334.
 LU Nan,LU Chun-yi,ZHOU Chun-Guang.The parallel method on fast finding mining algorithms of association rules[J].Journal of Shenzhen University Science and Engineering,2005,22(No.2(095-188)):334.
[5]陆楠,周春光.WEB数据挖掘中异构数据集成问题的研究[J].深圳大学学报理工版,2002,19(3):31.
 LU Nan,ZHOU Chun-guang.Researches of Different Data Integration on WEB Data Mining[J].Journal of Shenzhen University Science and Engineering,2002,19(No.2(095-188)):31.
[6]陆 楠,周春光.互连性层次聚类法在交易数据聚类分析中的应用[J].深圳大学学报理工版,2003,20(1):63.
 LU Nan and ZHOU Chun-guang.The Application of Clustering Analysis to Transactional Data-set with Interconnecting Cluster Method[J].Journal of Shenzhen University Science and Engineering,2003,20(No.2(095-188)):63.
[7]杨峻山,纪震,谢维信,等.基于粒子群优化的生物组学数据分类模型选择[J].深圳大学学报理工版,2016,33(3):264.[doi:10.3724/SP.J.1249.2016.03264]
 Yang Junshan,Ji Zhen,Xie Weixin,et al.Model selection based on particle swarm optimization for omics data classification[J].Journal of Shenzhen University Science and Engineering,2016,33(No.2(095-188)):264.[doi:10.3724/SP.J.1249.2016.03264]
[8]陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J].深圳大学学报理工版,2017,34(3):300.[doi:10.3724/SP.J.1249.2017.03300]
 Chen Xingyu,Zhou Zhan,Huang Junwen,et al.A keyword-based mining method for customer segmentation[J].Journal of Shenzhen University Science and Engineering,2017,34(No.2(095-188)):300.[doi:10.3724/SP.J.1249.2017.03300]
[9]谷建伟,隋顾磊,李志涛,等.基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J].深圳大学学报理工版,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
 GU Jianwei,SUI Gulei,LI Zhitao,et al.Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J].Journal of Shenzhen University Science and Engineering,2018,35(No.2(095-188)):575.[doi:10.3724/SP.J.1249.2018.06575]
[10]何玉林,等.大规模数据集聚类算法的研究进展[J].深圳大学学报理工版,2019,36(1):4.[doi:10.3724/SP.J.1249.2019.01004]
 HE Yulin,and HUANG Zhexue,A review on clustering algorithms for large-scale data sets[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(095-188)):4.[doi:10.3724/SP.J.1249.2019.01004]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(60773099, 60973088)
作者简介:刘大有(1942-), 男(汉族),河北省乐亭县人, 吉林大学教授、博士生导师. E-mail: dyliu@jlu.edu.cn
引文:刘大有,董婥, 王生生. 基于矩形代数和公共模式方法的相似图像检索[J]. 深圳大学学报理工版,2012,29(2):100-106.
更新日期/Last Update: 2012-03-28