[1]孙军昌,杨正明,唐立根,等.致密气藏束缚水分布规律及含气饱和度研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):377-383.
 SUN Jun-chang,YANG Zheng-ming,TANG Li-gen,et al.Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir[J].Journal of Shenzhen University Science and Engineering,2011,28(No.5(377-470)):377-383.
点击复制

致密气藏束缚水分布规律及含气饱和度研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第28卷
期数:
2011年No.5(377-470)
页码:
377-383
栏目:
环境与能源
出版日期:
2011-09-20

文章信息/Info

Title:
Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir
文章编号:
1000-2618(2011)05-0377-07
作者:
孙军昌13杨正明2唐立根2晏军13
1)中国科学院渗流流体力学研究所,河北廊坊 065007
2)中国石油勘探开发研究院廊坊分院,河北廊坊 065007
3)中国科学院研究生院,北京 100049
Author(s):
SUN Jun-chang13YANG Zheng-ming2TANG Li-gen2and YAN Jun13
1)Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Hebei Province, Langfang 065007, P.R.China
2)Research Institute of Petroleum Exploration and Development-Langfang, Hebei Province, Langfang 065007, P.R.China
3)Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R.China
关键词:
油气藏开发致密砂岩气藏含气饱和度核磁共振束缚水孔隙结构
Keywords:
petroleum development tight sandstone gas reservoir gas saturation nuclear magnetic resonance(NMR) irreducible water pore structure
分类号:
TE 311
文献标志码:
A
摘要:
油气藏储层含气(油)饱和度是储量计算、储层评价及制定合理开发方案的关键参数之一.针对致密砂岩气藏孔喉细微、毛管力和束缚水饱和度较高的特点,经气水离心实验优选认为,2.07 MPa是致密砂岩气藏岩样的合适离心力,传统使用的0.69 MPa及适合于低渗油藏的1.38 MPa离心力均不适用于致密气藏.结合毛管压力方程,计算得到致密砂岩气藏储层有效渗流喉道半径下限为0.07 μm.结合低磁场核磁共振弛豫谱技术,发现致密气藏束缚水并不完全分布在微孔隙中,被小喉道所控制的较大孔隙中仍含有约16.39%的束缚水,这与该类储层喉道半径较小、孔喉半径较大有关.与密闭取心岩样核磁共振实验结果对比表明,优选离心力2.07 MPa的离心实验结果与气藏原始状态束缚水分布规律及原始含气饱和度具有很好的一致性.致密气藏束缚水饱和度较高,初始含气饱和度仅为26.76%.
Abstract:
Initial oil or gas saturation is one of the most important parameters to calculate and evaluate the reserves. A set of various centrifugal forces were used in the centrifugal experiment in order to find the suitable force corresponding to the tight gas reservoir. The experiment indicated that 2.07 MPa was suitable and the classical centrifugal forces such as 0.69 MPa and 1.38 MPa were less appropriate to the tight gas reservoir. Combined with the Laplace equation,results indicated that the lower limit of the effective flow throat radius of the tight gas reservoir was close to 0.07 μm. This value laid the foundation for the reservoir evaluation. Low field nuclear magnetic resonance (NMR) experimental results also implied that the irreducible water located in micro-pore space and traped in some large pores,which was related to the small throat radius but large pore-to throat ratio. Compared with the results of sealed cores,the centrifugal experimental results such as irreducible distribution feature and gas saturation are consistent with the results obtained from the initial gas reservoir. In summary,the irreducible water saturation of the tight gas reservoir is high and its initial gas saturation is as low as 26.76%.

参考文献/References:

[1] 郭平,张茂林,黄全华,等.低渗透致密砂岩气藏开发机理研究[M].北京:石油工业出版社,2009:1-32.
[2] 郭平,黄伟岗,姜贻伟,等.致密气藏束缚水与可动水研究[J].天然气工业,2006,26(10):99-101.
[3] 杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2007:132-135.
[4] 肖亮,肖忠祥.核磁共振测井T2cutoff确定方法及适用性分析[J].地球物理学进展,2008,23(1):167-172.
[5] 王瑞飞,陈明强.特低渗透砂岩储层可动流体赋存特征及影响因素[J].石油学报,2008,29(4):558-561.
[6] 李海波.岩心核磁T2截止值实验研究[D].北京:中国科学院研究生院,2007.
[7] Rahul Dastidar,Chandar Rai,Carl Sondergeld.核磁共振与常规油层物理信息相结合的浊积岩储层特征研究[C]// 国际石油工程师协会技术年会及展览会议论文集.休斯顿(美国):国际石油工程师协会,2004:1-15.(英文版)
[8] An Mai,Apostolos Kantzas.碳酸盐岩储层特征的低场核磁共振实验研究[C]// 国际石油工程师协会气藏技术讨论会论文集.卡尔加里(加拿大):国际石油工程师协会,2002:1-11.(英文版)
[9] 孙军昌,郭和坤,刘卫,等.低渗火山岩气藏可动流体T2截止值实验研究[J].西南石油大学学报自然科学版,2010,32(4):109-114.
[10] 杨正明,姜汉桥,朱光亚,等.低渗透含水气藏储层评价参数研究[J].石油学报,2008,29(2):252-255.
[11] 高树生,叶礼友,熊伟,等.利用核磁共振技术确定低渗砂岩气藏原始含水饱和度及可动水饱和度[J].中国物理快报,2010,27(12):1-2.(英文版)
[12] 张硕.低渗透油藏 CO2气驱渗流机理核磁共振研究[J].深圳大学学报理工版,2009,26(3):228-233.
[13] 焦翠花,夏冬冬,王军,等.特低渗砂岩储层物性下限确定方法[J].石油与天然气地质,2009,30(3):379-383.
[14] ZHOU Na,Takuya Matsumoto,Takahiro Hosokawa,等.多孔介质气体滞留机理的孔隙尺度X-CT实验研究 [J]. 流动测量与仪器,2010,21:262-267.(英文版)
[15] Ann Lisbeth,Lars Rennan,Hege C Wideroe,等.应用X-CT成像、核磁共振及环境扫描电镜研究孔洞型碳酸盐岩储层残余气分布规律[C]// 国际岩芯分析家协会专题论文集,阿布扎比(阿拉伯联合酋长国):国际岩芯分析家协会,2008:1-6.(英文版)
[16] 高树生,熊伟,刘先贵,等. 低渗透砂岩气体渗流机理实验研究现状及新认识[J].天然气工业,2010,30(1):52-55.
[17] 赵仁保,岳湘安,吴亚红. 氮气在水饱和岩心中的渗流规律[J].吉林大学学报工学版,2009,39(1):244-248.
[18] 付大其,朱华银,刘义成,等. 低渗气层岩石孔隙中可动水实验[J].大庆石油学院学报,2008,32(5):23-26.




[1] GUO Ping,ZHANG Mao-lin,HUANG Quan-hua,et al.Research on the Development Mechanism of the Low Permeability Tight Sandstone Gas Reservoir[M].Beijing:Petroleum Industry Press,2009:1-32.(in Chinese)
[2] GUO Ping,HUANG Wei-gang,JIANG Yi-wei,et al.Research on the irreducible and movable water of tight sandstone gas reservoir[J].Natural Gas Industry,2006,26(10):99-101.(in Chinese)
[3] YANG Sheng-lai,WEI Jun-zhi.Petrophysics[M].Beijing:Petroleum Industry Press,2007:132-135.(in Chinese)
[4] XIAO Liang,XIAO Zhong-xiang.Analysis of methods for determining NMR T2cutoff and its applicability[J].Progress in Geophysics,2008,23(1):167-172.
[5] WANG Rui-fei,CHEN Ming-qiang.Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir[J].Acta Petrolei Sinica,2008,29(5):558-561.(in Chinese)
[6] LI Hai-bo.Experimental Study of NMR T2cutoff of Reservoir Core[D].Beijing:Graduate University of Chinese Academy of Science,2007.(in Chinese)
[7] Rahul Dastidar,Chandar Rai,Carl Sondergeld.Integrating NMR with other petrophysical information to characterize a turbidite reservoir[C]// The SPE Annual Technical Conference and Exhibition.Houston(USA):The Society of Petroleum Engineers,2004:1-15.
[8] An Mai,Apostolos Kantzas.On the characterization of carbonate reservoirs using low field NMR tools[C]// The SPE Gas Technology Symposium.Calgary(Canada):The Society of Petroleum Engineers,2002:1-11.
[9] SUN Jun-chang,GUO He-kun,LIU Wei,et al.Experimental study on the movable fluid T2cutoff value of volcanic gas reservoir[J].Journal of southwest petroleum university science & technology edition,2010,32(4):109-114.(in Chinese)
[10] YANG Zheng-ming,JIANG Han-qiao,ZHU Guang-ya,et al.Research on reservoir evaluation index for low-permeability water-bearing gas reservoir[J].Acta Petrolei Sinica,2008,29(2):252-255.(in Chinese)
[11] GAO Shu-sheng,YE Li-you,XIONG Wei,et al.Nuclear magnetic resonance measurements of original water saturation and mobile water saturation in low permeability sandstone gas[J].Chinese Physics Letters,2010,27(2):1-2.
[11] WANG Wei-min,YE Chao-hui,GUO He-kun.Experimental study of NMR properties of continental sedimentary rocks[J].Chinese Journal of Magnetic Resonance,2001,18(2):113-121.
[12] ZHANG Shuo.NMR study on porous flow mechanism in low permeability reservoirs with CO2 flooding[J].Journal of Shenzhen University Science and Engineering,2009,26(3):228-233.
[13] JIAO Cui-hua,XIA Dong-dong,WANG Jun,et al.Methods for determining the petrophysical property cutoffs of extra-low porosity and permeability sandstone reservoirs[J].Oil & Gas Geology,2009,30(3):379-383.(in Chinese)
[14] ZHOU Na,Takuya Matsumoto,Takahiro Hosokawa,et al.Pore-scale visualization of gas trapping in porous media by X-ray CT scanning[J].Flow Measurement and Instrumentation,2010,21:262-267.
[15] Ann Lisbeth,Lars Rennan,Hege C Wideroe,et al.Residual gas distribution in vuggy carbonate by use of X-ray CT,NMR and cryo-ESEM[C]// The International Symposium of the Society of Core Analysts.Abu Dhabi(UAE):Society of Core Analysts,2008:1-6.
[16] GAO Shu-sheng,XIONG Wei,LIU Xian-gui,et al. Experimental research status and several novel understandings on gas percolation mechanism in low-permeability sandstone gas reservoirs[J].Natural Gas Industry,2010,30(1):52-55.(in Chinese)
[17] ZHAO Ren-bao,YUE Xiang-an,WU Ya-hong. Nitrogen percolation behavior in water saturated core[J].Journal of Jilin University Engineering and Technology Edition,2009,39(1):244-248.(in Chinese)
[18] FU Da-qi,ZHU Hua-yin,LIU Yi-cheng,et al. Experimental study of the movable water in the rock pore of low permeability gas layer[J].Journal of Daqing pPetroleum Institute,2008,32(5):23-26.(in Chinese)

相似文献/References:

[1]徐庆岩,杨正明,何英,等.超低渗透油藏非线性渗流数值模拟[J].深圳大学学报理工版,2012,29(No.6(471-580)):504.[doi:10.3724/SP.J.1249.2012.06504]
 XU Qing-yan,YANG Zheng-ming,HE Ying,et al.Numerical simulation of nonlinear seepage in super-low permeability reservoirs[J].Journal of Shenzhen University Science and Engineering,2012,29(No.5(377-470)):504.[doi:10.3724/SP.J.1249.2012.06504]
[2]滕起,杨正明,刘学伟,等.特低渗透油藏井组开发过程物理模拟[J].深圳大学学报理工版,2013,30(No.3(221-330)):299.[doi:10.3724/SP.J.1249.2013.03299]
 Teng Qi,Yang Zhengming,Liu Xuewei,et al.Well group development process physical simulation of the ultra-low permeability reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(No.5(377-470)):299.[doi:10.3724/SP.J.1249.2013.03299]
[3]江昀,许国庆,石阳,等.致密岩心带压渗吸的影响因素实验研究[J].深圳大学学报理工版,2020,37(5):497.[doi:10.3724/SP.J.1249.2020.05497]
 JIANG Yun,XU Guoqing,SHI Yang,et al.Experimental study on influencing factors for forced imbibition in tight sandstone cores[J].Journal of Shenzhen University Science and Engineering,2020,37(No.5(377-470)):497.[doi:10.3724/SP.J.1249.2020.05497]

备注/Memo

备注/Memo:
收稿日期:2010-12-02;修回日期:2011-08-03
基金项目:国家重点基础研究发展规划基金资助项目(2007CB209500);国家自然科学基金资助项目(10672187)
作者简介:孙军昌(1983-),男(汉族),陕西省白水县人,中国科学院博士研究生.E-mail:jjsun1983@yahoo.com.cn
通讯作者:杨正明(1969-),男(汉族),中国石油勘探开发研究院高级工程师.E-mail:yzmhxj@263.net
更新日期/Last Update: 2011-09-22