[1]陆楠,杜文峰,梁正平.基于FP-tree目录分割自适应算法[J].深圳大学学报理工版,2011,28(No.4(283-376)):341-346.
 LU Nan,DU Wen-feng,and LIANG Zheng-ping.A self-adaptive algorithm for the problem of catalog segmentation based on FP-tree[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(283-376)):341-346.
点击复制

基于FP-tree目录分割自适应算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第28卷
期数:
2011年No.4(283-376)
页码:
341-346
栏目:
光电工程
出版日期:
2011-07-20

文章信息/Info

Title:
A self-adaptive algorithm for the problem of catalog segmentation based on FP-tree
文章编号:
1000-2618(2011)04-0341-06
作者:
陆楠杜文峰梁正平
深圳大学计算机与软件学院,深圳 518060
Author(s):
LU NanDU Wen-fengand LIANG Zheng-ping
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, P.R.China
关键词:
数据挖掘目录分割顾客覆盖频繁模式树自适应算法
Keywords:
data miningcatalog segmentationcustomer coverfrequent pattern treeadaptive algorithm
分类号:
TP 311
文献标志码:
A
摘要:
研究面向顾客的商业智能目录分割问题,要求顾客对收到的目录至少有兴趣度t, 并评估满足最小兴趣度的顾客数量.为优化评估效果,构建频繁模式树结构FP-tree存储顾客数据库,给出MCC-CS算法解决目录分割问题,该算法使用树深度遍历法选择目录产品.经验证,该算法能够获得更好的商业目标.
Abstract:
The customer-oriented catalog segmentation problem in the context of business intelligence was studied. Particularly, the catalog segmentation problem was casted as an optimization for maximizing the satisfaction of all customers subject to the requirement of at least t interestingness for each customer. To solve this problem, we introduced an improved frequent pattern tree to store the customer database and proposed a novel MCC-CS algorithm to optimize the selection of catalog products based on depth-first search strategy. Experimental results show that MCC-CS is capable of obtaining better performance than other state-of-the-art methods.

参考文献/References:

[1] Kleinberg J,Papadimitriou C,Raghavan P.数据挖掘微观经济思想[J].数据挖掘与知识发现期刊,1998,2(4):311-324.(英文版)
[2] Ester M,GE Rong,JIN Wen,等.一种面向顾客目录分割的微观经济数据挖掘问题[C]// 第10届ACM SIGKDD数据挖掘与知识发现国际会议论文集.西雅图:计算机协会,2004:557-562.(英文版)
[3] Kleinberg J,Papadimitriou C,Raghavan P.目录分割问题的近似算法[C]// 第13届计算理论学术会议论文集.纽约:计算机协会,1998:321-219.(英文版)
[4] Kleinberg J,Papadimitriou C,Raghavan P.目录分割问题研究[J].ACM期刊,2004,51(2):263-280.(英文版)
[5] Charu C A.基于分割的流模型应用[C]// 第9届SIAM数据挖掘国际会议论文集.斯帕克斯(美国):工业和应用数学学会,2009:721-732.(英文版)
[6] HAN Jia-wei,PEI Jian,YIN Yi-wen.产生候选集频繁模式的数据挖掘[C]// ACM SIGMOD 数据管理国际会议论文集.达拉斯(美国):计算机协会,2005,8(1):53-87.(英文版)
[7] HAN Jia-wei,WANG Jiang-yong,LU Ying,等.具有最小支持度的k层闭合频繁模式的数据挖掘[C]// 第2届IEEE数据挖掘国际会议论文集.前桥(日本):IEEE出版社.2002:211-218.(英文版)
[8] 徐秀娟,王喆,常晓宇,等.一种新的面向顾客的目录分割算法[J].计算机研究与发展,2008,45(增刊1):310-315.
[9] Agrawal R.IBM同步数据发生器[M/OL].[2004-09-23] http://www.almaden.ibm.com/edquest /syndata.html.(英文版)
[10] Kleinberg J,Tardos E.算法设计[CP/DK].阅读,新泽西(美国):安德森·威斯利出版社,2005.(英文版)



[1] Kleinberg J, Papadimitriou C, Raghavan P. A microeconomie view of data mining[J].Journal of Data Mining and Knowledge Discovery,1998,2(4):311-324.
[2] Ester M,GE Rong,JIN Wen,et a1.A microeconomic data mining problem:customer-oriented catalog segmentation[C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Seattle:Association for Computing Machinery,2004:557-562.
[3] Kleinberg J, Papadimitriou C, Raghavan P. Approximation algorithm for segmentation problems[C]// Proceedings of the 13th Annual ACM Symp on Theory of Computing.New York:Association for Computing Machinery,1998:321-219.
[4] Kleinberg J,Papadimitriou C,Raghavan P.Segmentation problems[J].Journal of the ACM,2004,51(2):263-280.
[5] Charu C A.On seginent-based stream modeling and its application[C]// Proceedings of the 9th SIAM International Conference on Data Mining.Sparks(USA):Society for Industrial and Applied Mathematrs,2009:721-732.
[6] HAN Jia-wei,PEI Jian,YIN Yi-wen,et al.Mining frequent patterns without candidate generation: a frequent-Patterm tree approach[C]// Proceedings of the ACM SIGMOD Intemational Conference on Management of Data.Dallas(USA):Association for Computing Machinery,2000,8(1):53-87.
[7] HAN Jia-wei, WANG Jiang-yong, LU Ying, et al.Mining top-k frequent closed patterns without minimum support[C]// Proceedings of the IEEE International Conference on Data Mining.Maebashi(Japan):IEEE Press,2002:211-218.
[8] XU Xiu-juan,WANG Zhe,CHANG Xiao-yu, et al. A novel algorithm for the customer-oriented catalog segmentation problem[J]. Journal of Computer Research and Development,2008,45(S1):310-315.(in Chinese)
[9] Agrawal R.IBM Synthetic Data Generator [M/OL].[2004-09-23]http://www.almaden/ibm.com/edquest/syndata.html.
[10] Kleinberg J,Tardos E.Algorithm Design[CP/DK].Reading.New Jersey:Addison-Wesley,2005.

相似文献/References:

[1]明仲,林朝哲,蔡树彬.并行PSVM算法及其在入侵检测中的应用[J].深圳大学学报理工版,2010,27(3):327.
 MING Zhong,LIN Chao-zhe,and CAI Shu-bin.Parallel proximal support vector machine and its application in intrusion detection[J].Journal of Shenzhen University Science and Engineering,2010,27(No.4(283-376)):327.
[2]刘大有,董婥,王生生.基于矩形代数和公共模式方法的相似图像检索[J].深圳大学学报理工版,2012,29(No.2(095-188)):100.[doi:10.3724/SP.J.1249.2012.02100]
 LIU Da-you,DONG Chuo,and WANG Sheng-sheng.An improved similarity retrieval of images based on CPM and rectangle algebra[J].Journal of Shenzhen University Science and Engineering,2012,29(No.4(283-376)):100.[doi:10.3724/SP.J.1249.2012.02100]
[3]王娜,李霞,徐红英.社会网络分析之社区发现研究[J].深圳大学学报理工版,2014,31(1):35.[doi:10.3724/SP.J.1249.2014.01035]
 Wang Na,Li Xia,and Xu Hongying.Research on community detection in social network[J].Journal of Shenzhen University Science and Engineering,2014,31(No.4(283-376)):35.[doi:10.3724/SP.J.1249.2014.01035]
[4]陆楠,陆春一,周春光.快速发现关联规则挖掘算法的并行化方法[J].深圳大学学报理工版,2005,22(4):334.
 LU Nan,LU Chun-yi,ZHOU Chun-Guang.The parallel method on fast finding mining algorithms of association rules[J].Journal of Shenzhen University Science and Engineering,2005,22(No.4(283-376)):334.
[5]陆楠,周春光.WEB数据挖掘中异构数据集成问题的研究[J].深圳大学学报理工版,2002,19(3):31.
 LU Nan,ZHOU Chun-guang.Researches of Different Data Integration on WEB Data Mining[J].Journal of Shenzhen University Science and Engineering,2002,19(No.4(283-376)):31.
[6]陆 楠,周春光.互连性层次聚类法在交易数据聚类分析中的应用[J].深圳大学学报理工版,2003,20(1):63.
 LU Nan and ZHOU Chun-guang.The Application of Clustering Analysis to Transactional Data-set with Interconnecting Cluster Method[J].Journal of Shenzhen University Science and Engineering,2003,20(No.4(283-376)):63.
[7]杨峻山,纪震,谢维信,等.基于粒子群优化的生物组学数据分类模型选择[J].深圳大学学报理工版,2016,33(3):264.[doi:10.3724/SP.J.1249.2016.03264]
 Yang Junshan,Ji Zhen,Xie Weixin,et al.Model selection based on particle swarm optimization for omics data classification[J].Journal of Shenzhen University Science and Engineering,2016,33(No.4(283-376)):264.[doi:10.3724/SP.J.1249.2016.03264]
[8]陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J].深圳大学学报理工版,2017,34(3):300.[doi:10.3724/SP.J.1249.2017.03300]
 Chen Xingyu,Zhou Zhan,Huang Junwen,et al.A keyword-based mining method for customer segmentation[J].Journal of Shenzhen University Science and Engineering,2017,34(No.4(283-376)):300.[doi:10.3724/SP.J.1249.2017.03300]
[9]谷建伟,隋顾磊,李志涛,等.基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J].深圳大学学报理工版,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
 GU Jianwei,SUI Gulei,LI Zhitao,et al.Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J].Journal of Shenzhen University Science and Engineering,2018,35(No.4(283-376)):575.[doi:10.3724/SP.J.1249.2018.06575]
[10]何玉林,等.大规模数据集聚类算法的研究进展[J].深圳大学学报理工版,2019,36(1):4.[doi:10.3724/SP.J.1249.2019.01004]
 HE Yulin,and HUANG Zhexue,A review on clustering algorithms for large-scale data sets[J].Journal of Shenzhen University Science and Engineering,2019,36(No.4(283-376)):4.[doi:10.3724/SP.J.1249.2019.01004]

备注/Memo

备注/Memo:
收稿日期:2010-12-14;修回日期:2011-04-10
基金项目:广东省自然科学基金资助项目(1015180600100)
作者简介:陆楠(1959-)男(汉族),上海市人,深圳大学教授、博士.E-mail:lunan@szu.edu.cn
更新日期/Last Update: 2011-07-21