[1]万浪辉,余陨金,卫亚东.电导涨落的自动图形算法及应用[J].深圳大学学报理工版,2011,28(No.4(283-376)):330-334.
 WAN Lang-hui,YU Yun-jin,and WEI Ya-dong.Automatic diagram calculation method and its applications for the fluctuations of conductance[J].Journal of Shenzhen University Science and Engineering,2011,28(No.4(283-376)):330-334.
点击复制

电导涨落的自动图形算法及应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第28卷
期数:
2011年No.4(283-376)
页码:
330-334
栏目:
光电工程
出版日期:
2011-07-20

文章信息/Info

Title:
Automatic diagram calculation method and its applications for the fluctuations of conductance
文章编号:
1000-2618(2011)04-0330-05
作者:
万浪辉12余陨金12卫亚东12
1)深圳大学物理科学与技术学院, 深圳 518060;2)深圳大学计算凝聚态物理研究所,深圳 518060
Author(s):
WAN Lang-hui12YU Yun-jin12and WEI Ya-dong12
1)College of Physics Science and Technology Shenzhen University, Shenzhen 518060, P.R.China
2)The Institute of Computational Condensed Matter Physics, Shenzhen 518060, P.R.China
关键词:
凝聚态理论量子输运电导统计涨落图形技术
Keywords:
condensed matter theoryquantum transportelectric conductancestatistics fluctuationdiagram technique
分类号:
O 488;O 469
文献标志码:
A
摘要:
在随机矩阵理论框架下,发展了量子系统电导和自旋霍尔电导涨落的高阶效应的自动图形计算方法.计算了2端子混沌空腔中直至5阶的电导涨落的解析表达式,给出随机矩阵理论系综自旋霍尔电导涨落的一般公式,发现在通道数目较多时,对正交系综和幺正系综,自旋霍尔电导存在普适的方差1/8.
Abstract:
Based on random-matrix theory,an automatic diagram calculation method for the higher order fluctuations of conductance and spin-Hall conductance was developed.The conductance fluctuations were calculated analytically up to the fifth order in the quantum system of the chaotic cavity connected with two ideal leads.The general formula for spin-Hall conductance fluctuations in random-matrix theory ensemble was reported for the first time. In the limits of large channel numbers,the universal spin-hall fluctuations variance was found to be 1/8 in circular orthogonal ensemble and circular unitary ensemble.

参考文献/References:

[1] Blanter Y M,Buttiker M.介观导体中的散粒噪声[J].物理报道,2000,336(1/2):1-166.(英文版)
[2] Beenakker C W J.量子输运中的随机矩阵理论[J].现代物理评论,1997,69(3):731-808.(英文版)
[3] WEI Ya-dong,WANG Bai-gen,WANG Jian,等.粒噪声的非线性电压依赖关系[J].物理评论B辑:凝聚态,1999,60(24):16900-16905.(英文版)
[4] Savin D V,Sommers H J.混沌空腔中任意开放通道数目的量子噪声[J].物理评论B辑:凝聚态,2006,73(8):081307-1-081307-3.(英文版)
[5] Novaes M.混沌空腔中多开放通道的充分计数的统计性质[J].物理评论B辑:凝聚态,2007,75(7):073304-1-073304-4.(英文版)
[6] Savin D V,Sommers H J,Wieczorek W.混沌空腔中量子输运的非线性统计[J].物理评论B辑:凝聚态,2008,77(12):125332-1-125352-5.(英文版)
[7] Brouwer P W,Beenakker C W J.幺正群的图形计算方法及其在介观系统的量子输运[J].数学物理杂志,1996,37(10),4904-4934.(英文版)
[8] Adagideli I,Bardarson J H,Jacquod Ph.介观空腔中自旋电导的电子探测[J].凝聚态物理杂志,2009,21(15):155503-1-155503-5.(英文版)
[9] Bardarson J,Adagideli I,Jacquod Ph.介观自旋霍尔效应[J].物理评论快报,2007,98(19):196601-1-196601-4.(英文版)
[10] Mehta M L.随机矩阵[M].阿姆斯特丹:爱斯唯尔有限公司,2004:33-60.(英文版)
[11] Stephen Wolfram.数学手册[M].第5版.尚佩恩(美国):沃尔夫勒姆传媒,2003:1.(英文版)
[12] Baranger H U,Mello P A.混沌空腔中的介观输运:随机散射矩阵近似[J].物理评论快报,1994,73(1):142-145.(英文版)
[13] Jalabert R A,Pichard J L,Beenakker C W J.弹道式输运下混沌的量子普适信号[J].欧洲物理快报,1994,27(4):255-260.(英文版)
[14] REN Wei,QIAO Zhen-hua,WANG Jian,等.二维普适自旋电导涨落[J].物理评论快报,2006,97(6):066603-1-066603-4.(英文版)



[1] Blanter Ya M,Buttiker M.Shot noise in mesoscopic conductors[J].Physics Report,2000,336(1/2):1-166.
[2] Beenakker C W J.Random-matrix theory of quantum transport[J].Reviews of Modern Physics,1997,69(3):731-808.
[3] WEI Ya-dong,WANG Bai-gen,WANG Jian,et al.Nonlinear voltage dependence of shot noise[J].Physical Review B:Condensed Matter,1999,60(24):16900-16905.
[4] Savin D V,Sommers H J.Shot noise in chaotic cavities with an arbitrary number of open channels[J].Physical Review B:Condensed Matter,2006,73(8):081307-1-081307-3.
[5] Novaes M.Full counting statistics of chaotic cavities with many open channels[J].Physical Review B:Condensed Matter,2007,75(7):073304-1-073304-4.
[6] Savin D V,Sommers H J,Wieczorek W.Nonlinear statistics of quantum transport in chaotic cavities[J].Physical Review B:Condensed Matter,2008,77(12):125332-1-125332-5.
[7] Brouwer P W,Beenakker C W J.Diagrammatic method of integration over the unitary group,with applications to quantum transport in mesoscopic system[J].Joural of Mathematical Physics,1996,37(10):4904-4934.
[8] Adagideli I,Bardarson J H,Jacquod Ph.Electrical probing of the spin conductance of mesoscopic cavities[J].Journal of Physics:Condensed Matter,2009,21(15):155503(1-5).
[9] Bardarson J H,Adagideli I,Jacquod Ph.Mesoscopic spin hall effect[J].Physical Review Letters,2007,98(19):196601-1-196601-4.
[10] Mehta M L.Random Matrices[M].5th edit.Amsterdam:Elsevier Ltd,2004:33-60.
[11] Stephen Wolfram.The Mathematica Book [M].5th edit.Champaign(USA):Wolfram Media,2003.
[12] Baranger H U,Mello P A.Mesoscopic transport through chaotic cavities:a random S-matrix theory approach[J].Physical Review Letters,1994,73(1):142-145.
[13] Jalabert R A,Pichard J L,Beenakker C W J.Universal quantum signatures of chaos in Ballistic transport[J].Europhysics Letters,1994,27(4):255-260.
[14] REN Wei,QIAO Zhen-hua,WANG Jian,et al.Universal spin-hall conductance fluctuations in two dimensions[J].Physical Review Letters,2006,97(6):066603-1-066603-4.

备注/Memo

备注/Memo:
收稿日期:2011-03-21;修回日期:2011-05-06
基金项目:国家自然科学基金资助项目(10947018,11074171)
作者简介:万浪辉(1974-),男(汉族),江西省南昌市人,深圳大学副教授、博士.E-mail:wanlh@szu.edu.cn
更新日期/Last Update: 2011-07-21