[1]顾樵.辐射场的量子熵[J].深圳大学学报理工版,2011,28(No.2(095-188)):95-104.
 GU Qiao.Quantum entropy of radiation fields[J].Journal of Shenzhen University Science and Engineering,2011,28(No.2(095-188)):95-104.
点击复制

辐射场的量子熵()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第28卷
期数:
2011年No.2(095-188)
页码:
95-104
栏目:
光电工程
出版日期:
2011-03-20

文章信息/Info

Title:
Quantum entropy of radiation fields
文章编号:
1000-2618(2011)02-0095-10
作者:
顾樵12
1)德国国际量子生物学研究所,Haloch,德国,67454
2)深圳大学电子科学与技术学院, 深圳 518060
Author(s):
GU Qiao12
1)International Institute of Quantum Biology,Haβloch 67454,Germany
2)College of Electronic Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China
关键词:
量子熵熵函数计算方法混合态辐射场辐射场的量子起伏耗散量子系统量子熵演化量子光学量子信息学生物光子学
Keywords:
quantum entropymethod for calculation of entropy functionradiation field in mixed statequantum fluctuation of radiation fielddissipative quantum systemevolution of quantum entropyquantum opticsquantum informaticsbiophotonics
分类号:
O 431.2
文献标志码:
A
摘要:
阐述熵的深刻涵义,对混合态的量子系统,建立计算熵函数的一般方法,并用其计算典型辐射场的量子熵.结果显示,量子熵关联到辐射场的微观起伏,因而能描述其量子相干性.显示了一个典型的耗散量子系统的熵演化特征.指出量子熵的研究方法和结果,有望用于量子光学、量子信息学、生物光子学及相关交叉学科领域.
Abstract:
Based on the elucidation for definition of entropy,we present a general method for calculating entropy of a quantum system in mixed state and apply it to the radiation fields in the typically mixed states.The results demonstrate that the quantum entropy is correlated to the microscopic fluctuation of the radiation fields,and it may therefore describe the quantum coherence properties of the radiation fields.As an example,the evolution of entropy of a dissipative quantum system is investigated then.The results obtained in this paper are expected to provide a basis for applications of entropy method in some fields,such as quantum optics,quantum informatics,biophotonics,and related interdisciplinary science.

参考文献/References:

[1]Shannon C E,Weaver W.通讯数学原理[M].厄巴纳(美国):伊利诺伊州大学出版社,1949:18-39.(英文版)
[2]Jaynes E T.信息论与统计力学[J].物理评论,1957,106(4):620-630.(英文版)
[3]Jaynes E T.信息论与统计力学II[J].物理评论,1957,108(2):171-190.(英文版)
[4]Jaynes E T.我们应该研究的最大熵原理是什么?[G]// Levine R D,Tribus M.最大熵原理.剑桥:麻省理工学院出版社,1978:15-118.(英文版)
[5]Neumann J V.量子力学的数学原理[M].普林斯顿(美国):普林斯顿大学出版社,1955:10-32.(英文版)
[6]Perinova V,Krepelka J,Perina J.光场的熵[J].光学学报,1986,33(1):15-32.(英文版)
[7]Gamo H.部分相干性的矩阵解法[G]// Wolf E.光学进展(第3卷).阿姆斯特丹:阿姆斯特丹出版社,1964:187-332.(英文版)
[8]Kikuchi R,Soffer B H.最大熵的图像重建I.熵的表达式[J].美国光学学会期刊,1977,67(12):1656-1665.(英文版)
[9]Perina J.线性与非线性光学现象的量子统计原理[M].多德雷赫特(荷兰):D.Reidel出版公司,1984:19-44.(英文版)
[10]Phoenix S J D,Knight P L.量子光学共振模型的起伏与熵[J].物理学年鉴,1988,186(2):381-407.(英文版)
[11]Phoenix S J D,Knight P L.Jaynes-Cummings模型中原子-场纠缠态的建立[J].物理评论A,1991,44(9):6023-6029.(英文版)
[12]Bollini C G,Oxman L E.单模压缩算符的Shannon熵和本征态[J].物理评论A,1993,47(3):2339-2343.(英文版)
[13]Barnett S M,Phoenix S J D.用熵来度量量子光学的关联[J].物理评论A,1989,40(5):2404-2409.(英文版)
[14]Lee C T.用Wehrls熵度量压缩[J].光学通讯,1988,66(1):52-54.(英文版)
[15]Rai S.不确定性、熵与量子态的信息互换[J].美国光学学会期刊B,1992,9(4):590-594.(英文版)
[16]Knll L,Orlowski A.密度算符之间的距离:用于Jaynes-Cummings模型[J].物理评论A,1995,51(2):1622-1630.(英文版)
[17]Louisell W H.辐射的量子统计特性[M].纽约:Wiley和Sons出版社,1973:57-85.(英文版)
[18]Haken H.信息与自组织:一种多元系统的宏观处理[M].柏林:施普林格出版社,1988:35-76.(英文版)
[19]Walls D F,Milburn G J.量子光学[M].柏林:施普林格出版社,1994:1-72.(英文版)
[20]Barnett S M,Knight P L.量子光学共振基本模型的耗散性质[J].物理评论A,1986,33(4):2444-2448.(英文版)
[21]Phoenix S J D.阻尼振子中的波包演化[J].物理评论A,1990,41(9):5132-5138.(英文版)
[22] Kim M S.Jaynes-Cummings叠加态的耗散与放大[J].现代光学期刊,1993,44(7):1331-1350.(英文版)
[23] CHEN Jing-qiu,GU Qiao,PENG Wen-da.薛定谔猫态的Wehrls熵[J].现代应用科学,2009,3(3):10-15.(英文版)
[24] CHEN Jing-qiu,GU Qiao,PENG Wen-da.正交相干态与二能级原子相互作用的统计特性[J].现代应用科学,2009,3(4):37-44.(英文版)
[25]顾樵.生物光子辐射的量子理论[C]// Popp F A,Li K H,顾樵.生物光子学及其应用研究进展.新加坡:世界科学出版社,1992:59-114.(英文版)
[26]顾樵,Popp F A.生物光子辐射对外部微扰的非线性响应(综述)[J].实验,1992,48(11/12):1069-1082.(英文版)
[27]顾樵,Popp F A.生物光子辐射作为度量组织序的一种潜在方法[J].中国科学:英文版,1994,B37(9):1099-1112.(英文版)
[28]Popp F A,顾樵,Li K H.生物光子辐射:实验背景与理论处理(综述)[J].现代物理快报,1994,B8(21/22):1269-1296.(英文版)
[29]顾樵.生物光子学[M].北京:科学出版社,2007:89-126.



[1]Shannon C E,Weaver W.The Mathematical Theory of Communication[M].Urbana(USA):University of Illinois Press,1949:18-39.
[2]Jaynes E T.Information theory and statistical mechanics[J].Physics Review,1957,106(4):620-630.
[3]Jaynes E T.Information theory and statistical mechanics:II[J].Physics Review,1957,108(2):171-190.
[4]Jaynes E T.Where do we stand on maximum entropy?[G]// Levine R D,Tribus M.The Maximum Entropy Formalism.Cambridge:The MIT Press,1978:15-118.
[5]Neumann J V.Mathematical Foundations of Quantum Mechanics[M].Princeton(USA):Princeton University Press,1955:10-32.
[6]Perinova V,Krepelka J,Perina J.Entropy of optical fields[J].Optica Acta,1986,33(1):15-32.
[7]Gamo H.Matrix treatment of partial coherence[G]// Wolf E.Progress in Optics Vol III.Amsterdam:Amsterdam Press,1964:187-332.
[8]Kikuchi R,Soffer B H.Maximum entropy image restoration I.The entropy expression[J].Journal of the Optical Society of America,1977,67(12):1656-1665.
[9]Perina J.Quantum Statistics of Linear and Nonlinear Optical Phenomena[M].Dordrecht(The Netherlands):D Reidel Publishing Company,1984:19-44.
[10]Phoenix S J D,Knight P L.Fluctuations and entropy in modes of quantum optical resonance[J].Annals of Physics,1988,186(2):381-407.
[11]Phoenix S J D,Knight P L.Establishment of an entangled atom-field state in Jaynes-Cummings model[J].Physics Review A,1991,44(9):6023-6029.
[12]Bollini C G,Oxman L E.Shannon entropy and the eigenstates of the single-mode squeeze operator[J].Physics Review A,1993,47(3):2339-2343.
[13]Barnett S M,Phoenix S J D.Entropy as a measure of quantum optical correlation[J].Physics Review A,1989,40(5):2404-2409.
[14]Lee C T.Wehrls entropy as a measure of squeezing[J].Optics Communications,1988,66(1):52-54.
[15]Rai S.Uncertainty,entropy,and mutual information for quantum states[J].Journal of the Optical Society of America B,1992,9(4):590-594.
[16]Knll L,Orlowski A.Distance between density operators:applications to the Jaynes-Cummings model[J].Physics Review A,1995,51(2):1622-1630.
[17]Louisell W H.Quantum Statistical Properties of Radiation[M].NY:John Wiley & Sons,1973:57-85.
[18]Haken H.Information and Self-organization:A Macroscopic Approach to Complex Systems[M].Berlin:Springer-Verlag,1988:35-76.
[19]Walls D F,Milburn G J.Quantum Optics[M].Berlin:Springer-Verlag,1994:1-72.
[20]Barnett S M,Knight P L.Dissipation in a fundamental model of quantum optical resonance[J].Physics Review A,1986,33(4):2444-2448.
[21]Phoenix S J D.Wave-packet evolution in the damped oscillator[J].Physics Review A,1990,41(9):5132-5138.
[22] Kim M S.Dissipation and amplification of Jaynes-Cummings superposition states[J].Journal of Modern Optics,1993,44(7):1331-1350.
[23] CHEN Jing-qiu,GU Qiao,PENG Wen-da.The Wehrls entropy of Schrdinger-cat states[J].Modern Applied Science,2009,3(3):10-15.
[24] CHEN Jing-qiu,GU Qiao,PENG Wen-da.The statistics properties of orthogonal coherent state interacting with a two-level atom[J].Modern Applied Science,2009,3(4):37-44.
[25]GU Qiao.Quantum theory of biophoton emission[C]// Popp F A,Li K H,GU Qiao.Recent advances in biophoton research and its applications.Singapore:World Scientific,1992:59-114.
[26]GU Qiao,Popp F A.Nonlinear response of biophoton emission to external perturbations(review)[J].Experientia,1992,48(11/12):1069-1082.
[27]GU Qiao,Popp F A.Biophoton emission as a potential measure of organizational order[J].Science in China:English edition,1994,B37(9):1099-1112.
[28]Popp F A,GU Qiao,Li K H.Biophoton emission:experimental background and theoretical approaches (review)[J].Modern Physics Letter,1994,B8(21/22):1269-1296.
[29]GU Qiao.Biophotonics[M].Beijing:Science Press,2007:89-126.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2010-12-10;修回日期:2011-02-28
基金项目:德国国际量子生物学研究所专项基金资助项目
作者简介:顾樵 (1947-),男(汉族),陕西省西安市人,德国国际量子生物学研究所首席科学家、深圳大学教授.E-mail:gu-qiao@gmx.de
更新日期/Last Update: 2011-03-24