[1]张晓明,王赫,彭建华.离散超混沌系统的多同步态电路实验[J].深圳大学学报理工版,2010,27(3):317-321.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.Circuit experiments of multiple synchronization states in discrete hyperchaotic systems[J].Journal of Shenzhen University Science and Engineering,2010,27(3):317-321.
点击复制

离散超混沌系统的多同步态电路实验()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第27卷
期数:
2010年3期
页码:
317-321
栏目:
光电与信息工程
出版日期:
2010-07-30

文章信息/Info

Title:
Circuit experiments of multiple synchronization states in discrete hyperchaotic systems
文章编号:
1000-2618(2010)03-0317-05
作者:
张晓明王赫彭建华
深圳大学物理科学与技术学院,深圳518060
Author(s):
ZHANG Xiao-mingWANG He and PENG Jian-hua
College of Physics Science and Technology
Shenzhen University
Shenzhen 518060
P.R.China
关键词:
统计物理学 离散超混沌系统 电路实验 主动-被动同步 多同步态
Keywords:
statistical physics discrete hyperchaotic system circuit experiment active-passive synchronization multiple synchronization states
分类号:
O 415.5;O 415.6
文献标志码:
A
摘要:
基于主动-被动同步方案,利用电路实验实现具有立方非线性项的离散超混沌系统在单相耦合条件下的多同步态.多同步态是指驱动系统和响应系统的各状态变量之间分别实现完全同步、反同步、广义同步等不同类型的同步态.从理论上确定驱动和响应系统实现多同步态的解析条件.设计并搭建离散超混沌系统电路,所得多同步态电路实验结果与理论分析及计算机数值模拟结果相符.
Abstract:
Experiments on synchronization of two hyperchaotic discrete circuit systems are presented. These two systems are uniaxially coupled with the active-passive synchronization scheme. The state variables of the coupled circuits can achieve different kinds of synchronizations, such as complete synchronization, generalized synchronization, complete anti-synchronization and generalized anti-synchronization. The analytical conditions for different synchronous states are obtained. The experimental results are consistent with the theoretical computation and numerical simulations.

参考文献/References:

[1]Pecora L M,Carroll T L.混沌系统中的同步[J].物理评论快报,1990,64(8):821-824.(英文版)
[2]Ravoori B,Cohen A B,Setty A V,等.耦合混沌振子的自适应同步[J].物理评论E,2009,80(5):056205.(英文版)
[3]张银萍,孙继涛.基于变量拆分的混沌同步与反同步[J].物理快报A,2004,330(6):442-447.(英文版)
[4]Kocarev L,Parlitz U.单向耦合动力系统中的广义同步,可测性和等价性[J].物理评论快报,1996,76(11):1816-1819.(英文版)
[5]Alvarez-Llamoza O,Cosenza M G.自治系统中的广义混沌同步[J].物理评论E,2008,78(4):046216.(英文版)
[6]Boccaletti S,Kurths J,Osipov G,等.混沌系统同步综述[J].物理报道,2002,366(1/2):1-101.(英文版)
[7]Aviad Y,Reidler I,Kinzel W,等.耦合二极管激光器中的混沌相同步[J].物理评论 E,2008,78(2):025204.(英文版)
[8]Rosenblum M G,Pikovsky A S,Kurths J.耦合混沌系统中从相同步到滞后同步[J].物理评论快报,1997,78(22):4193-4196.(英文版)
[9]Sivaprakasam S,Shahverdiev E M,Spencer P S,等.光学反馈激光半导体混沌系统中的预测同步[J].物理评论快报,2001,87(15):154101.(英文版)
[10]Pyragas K,Pyragien T.长时间混沌预测同步的耦合方式设计[J].物理评论 E,2008,78(4):046217.(英文版)
[11]Reddy D V R,Sen A,Johnston G L.由于延时引发耦合极限环振荡消失的实验验证[J].物理评论快报,2000,85(16):3381-3384.(英文版)
[12]刘秉正,彭建华.非线性动力学[ M ].北京:高等教育出版社,2004:1-100.
[13]Kocarev L,Parlitz U.混沌同步应用于保密通信的一般方法[J].物理评论快报,1995,74(25),5028-5031.(英文版)
[14]张晓明,王赫,彭建华.一个广义立方映象系统[J].深圳大学学报理工版,2009,26(3):327-330.



[1]Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
[2]Ravoori B,Cohen A B,Setty A V,et al.Adaptive synchronization of coupled chaotic oscillators[J].Physical Review E,2009,80(5):056205.
[3]ZHANG Yin-pin,SUN Ji-tao.Chaotic synchronization and anti-synchronization based on suitable separation[J].Physics Letter A,2004,330(6):442-447.
[4]Kocarev L,Parlitz U.Generalized synchronization,predictability,and equivalence of unidirectionally coupled dynamical systems[J].Physical Review Letters,1996,76(11):1816-1819.
[5]Alvarez-Llamoza O,Cosenza M G.Generalized synchronization of chaos in autonomous systems[J].Physical Review E,2008,78(4):046216.
[6]Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Physics Reports,2002,366(1/2):1-101.
[7]Aviad Y,Reidler I,Kinzel W,et al.Phase synchronization in mutually coupled chaotic diode lasers[J].Physical Review E,2008,78(2):025204.
[8]Rosenblum M G,Pikovsky A S,Kurths J.From phase to lag synchronization in coupled chaotic oscillators[J].Physical Review Letters,1997,78(22):4193-4196.
[9]Sivaprakasam S,Shahverdiev E M,Spencer P S,et al.Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback[J].Physical Review Letters,2001,87(15):154101.
[10]Pyragas K,Pyragien T.Coupling design for a long-term anticipating synchronization of chaos[J].Physical Review E,2008,78(4):046217.
[11]Reddy D V R,Sen A,Johnston G L.Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators[J].Physical Review Letters,2000,85(16):3381-3384.
[12]LIU Bing-zheng,PENG Jian-hua.Nonlinear Dynamics[M].Beijing:Higher Education Press,2004:1-100.(in Chinese)
[13]Kocarev L,Parlitz U.General approach for chaotic synchronization with applications to communication[J].Physical Review Letters,1995,74(25):5028-5031.
[14]ZHANG Xiao-ming,WANG He,PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(3):327-330.(in Chinese)

相似文献/References:

[1]张晓明,彭建华.共轭变量耦合非等同混沌系统的振荡消失[J].深圳大学学报理工版,2011,28(No.1(001-095)):89.
 ZHANG Xiao-ming and PENG Jian-hua.Amplitude death in conjugate variable coupled nonidentical chaotic systems[J].Journal of Shenzhen University Science and Engineering,2011,28(3):89.

备注/Memo

备注/Memo:
收稿日期:2010-04-25;修回日期:2010-05-21
基金项目:国家自然科学基金资助项目(70571053);深圳市科技计划资助项目(200425)
作者简介:张晓明(1978-),男(汉族),吉林省长春市人,深圳大学讲师、博士.E-mail:xmzhang@szu.edu.cn
通讯作者:彭建华(1955-),男(汉族),深圳大学教授.E-mail:pengjh173@163.com
更新日期/Last Update: 2010-07-30