[1]王险峰,邢锋,王卫仑,等.薄板中孔边裂纹与独立裂纹的相互作用[J].深圳大学学报理工版,2009,26(4):371-375.
 WANG Xian-feng,XING Feng,WANG Wei-lun,et al.Interaction between hole edge and line cracks in a thin plate[J].Journal of Shenzhen University Science and Engineering,2009,26(4):371-375.
点击复制

薄板中孔边裂纹与独立裂纹的相互作用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第26卷
期数:
2009年4期
页码:
371-375
栏目:
土木建筑工程
出版日期:
2009-10-31

文章信息/Info

Title:
Interaction between hole edge and line cracks in a thin plate
文章编号:
1000-2618(2009)04-0371-05
作者:
王险峰1邢锋1王卫仑1隋莉莉1长古部宣男2
1)深圳大学土木工程学院,深圳518060;
2)名古屋工业大学,名古屋市466-8555日本
Author(s):
WANG Xian-feng1XING Feng1WANG Wei-lun1SUI Li-li1and HASEBE Norio2
1) College of Civil Engineering,Shenzhen University,Shenzhen 518060,P. R. China
2)Department of Civil Engineering,Nagoya Institute of Technology,Nagoya 466-8555,Japan
关键词:
薄板角位错孔边裂纹有理型的保角映射应力强度因子
Keywords:
thin platedislocationhole edge crackrational mapping functionstress intensity factor
分类号:
TU 31.01
文献标志码:
A
摘要:
研究有孔边裂纹与独立裂纹的薄板在远程受弯曲作用时的响应.利用叠加原理,将原问题转化为两个含有孔边裂纹的子问题,远程弯曲只存在于第一子问题.在第二子问题中,假定沿独立裂纹线的位置存在一个连续分布的角位错,使之在此处得到的面力与第一子问题所得到的相抵消,形成自由表面的裂纹,通过基于点位错解的奇异积分方程得到连续分布位错的解.给出了板弯曲问题基于位错密度函数的应力强度因子的表达式,求得孔边裂纹及独立裂纹应力强度因子的数值解,考察了薄板在远程弯曲时方形孔边裂纹和线裂纹的应力强度因子变化.
Abstract:
A problem of a wide plate with hole edge and line cracks subjected to remote bending was studied.Using the principle of superposition,the original problem was converted into two sub problems with hole edge crack.The remote bending was applied to the first problem.In the second problem,it was assumed that there was a continuous distribution of dislocations along the crack line,along which the induced tractions were opposite to those obtained in the first problem.The solution was formulated as a singular integral equation with the employment of the Green’s function of a point dislocation.The closed form solution of the first problem,as well as the Green’s function of the point dislocation,was obtained by means of complex stress functions approach and the rational mapping technique.A singular integral equation is obtained and solved numerically.The expression of the stress intensity factor is expressed in terms of the dislocation density function.

参考文献/References:

[1]Pham C V,Hasebe N,Wang X F,等.在均匀热流下裂纹孔与线裂纹的相互作用问题[J].国际断裂杂志,2005,131(4):367-384 (英文版).
[2]Yan X.在无限和有限板中内压作用下菱形孔引发裂纹问题[J].工程破坏分析,2007,14(4):548-556 (英文版).
[3]Yan X.二维弹性板中从椭圆孔引发裂纹的数值分析[J].欧洲力学杂志:A辑,2006,25(1):142-53 (英文版).
[4]Chen Y Z,Lin X Y.从半平面边界引发多曲线裂纹问题的奇异积分方程方法[J].计算方法国际杂志,2006,3:205-217 (英文版).
[5]Chen Y Z,Lin X Y,Wang Z X.利用奇异积分方程方法求解由圆孔引发多曲折裂纹的半解析解[J].应用数学与计算,2009,213(2):389-404 (英文版).
[6]Wang Y J,Gao C F. 压电固体中圆孔边引发Ⅲ型裂纹问题[J].国际固体与结构杂志,2008,45:4590-4599 (英文版).
[7]Abdelmoula R,Semani K,Li J.利用一种新的保角影射法分析无限板中圆孔边界引发的裂纹[J].应用数学与计算,2007,188:1891-1896 (英文版).
[8]Hasebe N,Wang X F,Nakanishi H.应力和位移边界条件下平面内含任意形状孔的磁弹性问题[J].力学与应用数学季刊,2007,60(4):423-442 (英文版).

[1]Pham C V,Hasebe N,Wang X F,et al.Interaction between a cracked hole and a line crack under uniform heat flux[J].International Journal of Fracture,2005,131(4):367-384.
[2]Yan X.Cracks emanating from a rhombus hole in infinite and finite plate subjected to internal pressure[J].Engineering Failure Analysis,2007,14(4):548-556.
[3]Yan X.A numerical analysis of cracks emanating from an elliptical hole in a 2-D elasticity plate[J].Eur J Mech-A,2006,25(1):142-53.
[4]Chen Y Z,Lin X Y.Singular integral equation method for multiple curved edge cracks emanating from boundary of half-plane[J].Int J Comput Methods,2006,3:205-217.
[5]Chen Y Z,Lin X Y,Wang Z X.A semi-analytic solution for multiple curved cracks emanating from circular hole using singular integral equation[J].Appl Math Comput,2009,213(2):389-404.
[6]Wang Y J,Gao C F. The mode Ⅲ cracks originating from the edge of a circular hole in a piezoelectric solid[J].International Journal of Solids and Structures,2008,45:4590-4599.
[7]Abdelmoula R,Semani K,Li J.Analysis of cracks originating at the boundary of a circular hole in an infinite plate by using a new conformal mapping approach[J].Applied Mathematics and Computation,2007,188:1891-1896.
[8]Hasebe N,Wang X F,Nakanishi H.On magnetoelastic problems of a plane with an arbitrarily shaped hole under stress and displacement boundary conditions[J].Quarterly Journal of Mechanics and Applied Mathematics, 2007,60(4):423-442.

备注/Memo

备注/Memo:
收稿日期:2008-12-17;修回日期:2009-04-05
基金项目:广东省自然科学基金资助项目(50608051);深圳市南山区科技计划资助项目(2008010)
作者简介:王险峰(1967-),男(汉族),北京市人,深圳大学讲师、博士.E-mail:xfw@szu.edu.cn
通讯作者:邢锋(1965-),男(汉族),深圳大学教授、博士生导师.E-mail: xingf@szu.edu.cn
更新日期/Last Update: 2009-11-09