[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327-330.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(3):327-330.
点击复制

一个广义立方映像系统()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第26卷
期数:
2009年3期
页码:
327-330
栏目:
物理与应用物理
出版日期:
2009-07-31

文章信息/Info

Title:
A generalized cubic map
文章编号:
1000-2618(2009)03-0327-04
作者:
张晓明王赫彭建华
深圳大学物理科学与技术学院,深圳518060
Author(s):
ZHANG Xiao-mingWANG Heand PENG Jian-hua
College of Physics Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China
关键词:
立方映像混沌超混沌Lyapunov指数Jury准则
Keywords:
cubic mapchaoshyeprchaosLyapunov exponentsJury rules
分类号:
O 415.5;O 415.6
文献标志码:
A
摘要:
构造一个仅含单一非线性立方项且维数可变的广义映像系统,该系统正性Lyapunov指数的个数随其维数增加而增加,可从低维混沌向高维超混沌过渡.利用Jury准则,解析广义立方映像系统从2维到4维的情况下,其不动点附近的局部稳定性,通过数值计算揭示该系统的动力学特征和规律.
Abstract:
A generalized cubic map with alterable dimension was formulated.This map compromises only one nonlinear cubic term.The number of its positive Lyapunov exponents is increased with the growth of the map dimension accompanied by the transition from chaos to hyperchaos state.The stability of the cubic map from two dimensions to four dimensions was analyzed using the Jury rules.The dynamical characteristic of this cubic map was also determined by numerical computations.

参考文献/References:

[1]Baptista M S.利用混沌加密[J].物理快报A,1998,240:50-54(英文版).
[2]Dang P P,Chau P M.图像加密方法在因特网多媒体保密上的应用[J].IEEE消费电子汇刊,2000,46(3):395-403(英文版).
[3]李树钧,牟轩沁.提高安全性的混沌加密方法[J].物理快报A,2001,290(3-4):133-137(英文版).
[4]Kocarev L,Jakimovski G.混沌与混沌加密:从混沌映像到加密算法[J].IEEE电路与系统汇刊,2001,48(2):163-169(英文版).
[5]Dachselt F,Schwarz W.混沌加密算法[J].IEEE电路与系统汇刊,2001,48(12):1498-1509(英文版).
[6]Wong K W,Ho S W,Yung C K.一个以长生简短的密码混沌加密方案[J].物理快报A,2003,310(1):67-73(英文版).
[7]Kelber K,Schwarz W.混沌加密系统设计原则[J].国际分岔与混沌杂志,2007,17(10):3703-3707(英文版).
[8]Zhou Q,Wong K,Liao X F,等.基于离散混沌映像的并行图像加密算法[J].混沌、孤子与分形,2008,38(4):1081-1092(英文版).
[9]Sun F Y,Liu S T,Li Z Q,等.一种基于空间混沌映像的图像加密新算法[J].混沌、孤子与分形,2008,38(3):631-640(英文版).
[10]Wong K W,Kwok B S H,Law W S.基于混沌标准映像的快速加密算法[J].物理快报A,2008,372(15):2645-2652(英文版).
[11]尾形克彦.离散时间控制系统[M].第2版.北京:机械工业出版社,2004(英文版).
[12]Wolf A,Swift J B,Swinney H L,等.从时间序列确定Lyapunov指数[J].物理D,1985,(16):285-317(英文版).


[1]Baptista M S.Cryptography with chaos[J].Physics Letters A,1998,240:50-54.
[2]Dang P P,Chau P M.Image encryption for secure Internet multimedia applications[J].IEEE Transactions on Consumer Electronics,2000,46(3):395-403.
[3]Li S J,M X Q.Improving secureity of a chaotic encryption approach[J].Physics Letters A,2001,290(3-4):133-137.
[4]Kocarev L,Jakimovski G.Chaos and cryptography:from chaotic maps to encryption algorithms[J].IEEE Transcations on Circuits and System,2001,49:163-169.
[5]Dachselt F,Schwarz W.Chaos and cryptography[J].IEEE Trans Circuits Syst,2001,48(12):1498-1509.
[6]Wong K W,Ho S W,Yung C K.A chaotic cryptography scheme for generating short ciphertext[J].Physics Letters A,2003,310(1):67-73.
[7]Kelber K,Schwarz W.Some design rules for chaos-based encryption systems[J].International Journal of Bifurcation and Chaos,2007,17(10):3703-3707.
[8]Zhou Q,Wong K,Liao X F,et al.Parallel image encryption algorithm based on discretized chaotic map[J].Chaos Solitons & Fractals,2008,38(4):1081-1092.
[9]Sun F Y,Liu S T,Li Z Q,et al.A novel image encryption scheme based on spatial chaos map[J].Chaos Solitons & Fractals,2008,38(3):631-640.
[10]Wong K W,Kwok B S H,Law W S.A fast image encryption scheme based on chaotic standard map[J].Physics Letters A,2008,372(15):2645-2652.
[11]Katsuhiko Ogata.Discrete-Time Control Systems[M].2nd Edition.Beijing:China Machine Press,1995.
[12]Wolf A,Swift J B,Swinney H L,et al.Determining Lyapunov exponents from a time series[J].Physica D,1985,(16):285-317.

相似文献/References:

[1]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(3):469.[doi:10.3724/SP.J.1249.2013.05469]
[2]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(3):475.[doi:10.3724/SP.J.1249.2013.05475]
[3]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(3):626.[doi:10.3724/SP.J.1249.2014.06626]
[4]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(3):43.
[5]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(3):51.[doi:10.3724/SP.J.1249.2020.01051]

备注/Memo

备注/Memo:
收稿日期:2008-08-28;修回日期:2009-06-03
基金项目:国家自然科学基金资助项目(70571053);深圳大学青年科学基金资助项目(200846)
作者简介:张晓明(1978-),男(汉族),吉林省长春市人,深圳大学讲师、博士. E-mail:xmzhang@szu.edu.cn
通讯作者:彭建华(1955-),男(汉族),深圳大学教授.E-mail:pengjh@szu.edu.cn
更新日期/Last Update: 2009-08-26