[1]彭建华,吴迎春,张晓明.共轭变量耦合系统振荡消失研究[J].深圳大学学报理工版,2009,26(2):143-146.
 PENG Jian-hua,WU Ying-chun,and ZHANG Xiao-ming.Studies on the amplitude death phenomena in chaotic systems with conjugate variable coupling[J].Journal of Shenzhen University Science and Engineering,2009,26(2):143-146.
点击复制

共轭变量耦合系统振荡消失研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第26卷
期数:
2009年2期
页码:
143-146
栏目:
电子与信息工程
出版日期:
2009-04-30

文章信息/Info

Title:
Studies on the amplitude death phenomena in chaotic systems with conjugate variable coupling
文章编号:
1000-2618(2009)02-0143-04
作者:
彭建华1吴迎春12 张晓明1
1)深圳大学物理科学与技术学院,深圳 518060;
2)东北师范大学物理学院,长春 130024
Author(s):
PENG Jian-hua1WU Ying-chun12and ZHANG Xiao-ming1
1)College of Physics Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China
2)College of Physics,Northeast Normal University,Changchun 130024,P.R.China
关键词:
振荡消失共轭变量耦合混沌系统实验电路
Keywords:
amplitude deathconjugate variable couplingschaotic systemsexperimental circuit
分类号:
O 0415.5
文献标志码:
A
摘要:
采用共轭变量耦合方式构造了以Sprott-J模型为子系统的耦合系统,讨论等同和参数失配条件下耦合系统的振荡消失问题,给出理论解析判据,用数值计算方法验证其正确性.设计出该耦合系统的电路,通过 Pspice仿真平台实现了实验系统的振荡消失.
Abstract:
The amplitude death phenomena in both identical and mismatched coupled Sprott-J systems are investi-gated.The conditions for amplitude death are analytically determined and are numerically confirmed.We construct the circuit of coupled Sprott-J systems and find the same phenomena of amplitude death through PSpice software simulations.

参考文献/References:

[1]郑志刚.耦合非线性系统的时空动力学与合作行为[M].北京:高等教育出版社,2004:53-85.
[2]Steven H S.延时引发的振荡消失[J].自然,1998,394:316-317(英文版).
[3]Reddy D V R,Sen A,Johnston G L.由于延时引发耦合极限环振荡消失的实验验证[J].物理评论快报,2000,85(16):3381(英文版).
[4]Zhai Yumei,Kiss I Z,Hudson J L.耦合电化学振子通过Hopf分岔走向振荡消失的实验与仿真[J].物理评论E,2004,69(2):026208(英文版).
[5]Keiji Konishi,Hideki Kokame.由延时引发混沌映象格子的振荡消失及避免消失的发生[J].物理快讯A,2007,366:585-590(英文版).
[6]Awadhesh Prasad.耦合混沌振子的振荡消失[J].物理评论E,2005,72(5):056204(英文版).
[7]Rajat Karnatak,Ram Ramaswamy,Awadhesh Prasad.等同振子在无延时耦合下的振荡消失[J].物理评论E,2007,76(3):035201(英文版).
[8]Sprott J C.一些简单的混沌流[J]. 物理评论E,1994,50(2):647-650(英文版).
[9]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004:44-47.


[1]ZHENG Zhi-gang.Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems[M].Beijing:Higher Education Press,2004:53-85 (in Chinese).
[2]Steven H Strogatz.Death by delay[J].Nature,1998,394:316-317.
[3]Reddy D V R,Sen A,Johnston G L.Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators[J].Phys Rev Lett,2000,85(16):3381.
[4]Zhai Yumei,Kiss I Z,Hudson J L.Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: experiments and simulations[J].Phys Rev E,2004,69(2):026208.
[5]Keiji Konishi,Hideki Kokame.Time-delay-induced amplitude death in chaotic map lattices and its avoiding control[J].Phys Lett A,2007,366:585-590.
[6]Awadhesh Prasad.Amplitude death in coupled chaotic oscillators[J].Phys Rev E,2005,72(5):056204.
[7]Rajat Karnatak,Ram Ramaswamy,Awadhesh Prasad.Amplitude death in the absence of time delays in identical coupled oscillators[J].Phys Rev E,2007,76(3):035201.
[8]Sprott J C.Some simple chaotic flows[J].Phys Rev E,1994,50(2):647-650.
[9]LIU Bing-zheng,PENG Jian-hua.Nonlinear Dynamics[M].Beijing:Higher Education Press,2004 :44-47 (in Chinese).

相似文献/References:

[1]张晓明,彭建华.共轭变量耦合非等同混沌系统的振荡消失[J].深圳大学学报理工版,2011,28(No.1(001-095)):89.
 ZHANG Xiao-ming and PENG Jian-hua.Amplitude death in conjugate variable coupled nonidentical chaotic systems[J].Journal of Shenzhen University Science and Engineering,2011,28(2):89.

备注/Memo

备注/Memo:
收稿日期:2008-07-01;修回日期:2009-02-17
基金项目:国家自然科学基金资助项目(70571053,10405018);深圳市科技计划基金资助项目(200425)
作者简介:彭建华(1955-),男(汉族),湖南省湘乡市人,深圳大学教授.E-mail:pengjh@szu.edu.cn
更新日期/Last Update: 2009-05-15