[1]谭枫,杨莘元.基于文化算法和二维Otsu方法的快速图像分割[J].深圳大学学报理工版,2009,26(1):52-56.
 TAN Feng and YANG Shen-yuan.Fast image segmentation based on cultural algorithms and two-dimensional Otsu’s method[J].Journal of Shenzhen University Science and Engineering,2009,26(1):52-56.
点击复制

基于文化算法和二维Otsu方法的快速图像分割()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第26卷
期数:
2009年1期
页码:
52-56
栏目:
电子与信息工程
出版日期:
2009-01-30

文章信息/Info

Title:
Fast image segmentation based on cultural algorithms and two-dimensional Otsu’s method
文章编号:
1000-2618(2009)01-0052-05
作者:
谭枫杨莘元
哈尔滨工程大学信息与通信工程学院,哈尔滨 150001
Author(s):
TAN Feng and YANG Shen-yuan
School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,P.R.China
关键词:
图像分割阈值选取二维Otsu方法文化算法进化规划
Keywords:
image segmentationthreshold selection2-D Otsu’s methodcultural algorithmsevolutionary programming
分类号:
TP 391.41
文献标志码:
A
摘要:
针对二维Otsu方法计算量大的缺点,提出一种采用文化算法和二维Otsu法相结合的快速图像分割法.该方法利用文化算法的全局寻优能力,对图像的二维最大类间方差进行优化,通过文化算法的种群空间和信念空间的相互协作来获取二维Otsu的最佳二维阈值向量.实验结果表明,该方法具有良好的抗噪声性能,能得到较好的分割效果,缩短了寻找最佳二维阈值向量的时间,提高了二维Otsu方法的运算效率.
Abstract:
Two-dimensional (2-D) Otsu’s method was a common thresholding segmentation method.In order to improve computational efficiency,a novel method for image segmentation was proposed,namely the cultural training algorithms for 2-D Otsu’s method.Cultural algorithms(CA) was used to optimize the 2-D maximum between-cluster variance (MBV) of image.The optimal 2-D threshold vector can be successfully determined through the cooperation between the population space and the belief space of CA.Experimental results show that the proposed method has better anti-noise performance and produces the ideal segmentation results at a low computational cost.The real-time processing ability has also been demonstrated in comparison with the traditional methods.

参考文献/References:

[1]黄建军,喻建平.一种图像分割算法的选择方法[J].深圳大学学报理工版,2000,17(4):21-25.
[2]刘健庄,栗文清.灰度图像的二维Otsu自动阈值分割方法[J].自动化学报,1993,19(1):101-105.
[3]汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971.
[4]郝颖明,朱枫.二维Otsu自适应阈值的快速算法[J].中国图象图形学报.2005,10(4):484-488.
[5]Reynolds R G.文化算法介绍[C]//第三届进化规划年会论文集.新加坡:世界科学出版社,1994:131-136(英文版).
[6]Coello C A,Becerra R I.利用文化算法的多目标进化优化[C]//IEEE2003年群智能研讨会论文集.美国新泽西州皮斯卡塔韦:IEEE 服务中心,2003:6-13(英文版).
[7]黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报,2007,33(10):1115-1120.
[8]Xidong Jin,Reynolds R G.利用基于知识的进化计算解决非线性无约束优化问题:文化算法方法[C]// 1999年进化进算会议论文集.新泽西州皮斯卡塔韦:IEEE 服务中心,1999,3:1672-1678(英文版).
[9]Becerra R L,Coello C A.求解约束优化问题的文化差分进化算法[J].应用力学和工程技术中的计算机方法,2006,195(33-36):4303-4322 (英文版).
[10]Reynolds R G,Chung C.模糊方法获取文化算法中的经验知识[C]//第九届IEEE人工智能国际会议论文集.加利福尼亚州:IEEE 计算机学会,1997,585:94-99(英文版).

[1]HUANG Jian-jun,YU Jian-ping.An approach to the selection of image segmentation algorithms[J].Journal of Shenzhen University Science and Engineering,2000,17(4):21-25(in Chinese).
[2]LIU Jian-zhuang,LI Wen-qing.The automatic thresholding of gray-level pictures via two-dimensional OTSU method[J].Acta Automatic Sinica,1993,19(1):101-105(in Chinese).
[3]WANG Hai-yang,PAN De-lu,XIA De-shen.A fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J].Acta Automatic Sinica,2007,33(9):968-971(in Chinese).
[4]HAO Ying-ming,ZHU Feng.Fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J].Journal of Image and Graphics,2005,10(4):484-488(in Chinese).
[5]Reynolds R G.An introduction to cultural algorithms[C]// Proceedings of the Third Annual Conference on Evolutionary Programming.Singapore:World Scientific Publishing,1994:131-136.
[6]Coello C A,Becerra R I.Evolutionary multiobjective optimization using a cultural algorithm[C]//Proceedings of 2003 IEEE Swarm Intelligence Symposium.Piscataway:IEEE service center,2003:6-13.
[7]HUANG Hai-yan,GU Xing-sheng,LIU Man-dan.Research on cultural algorithm for solving nonlinear constrained optimization[J].Acta Automatic Sinca,2007,33(10):1115-11120(in Chinese).
[8]Xidong Jin,Reynolds R G.Using knowledge-based evolutionary computation of solve nonlinear constraint optimization problems:a cultural algorithm approach[C]//Proceedings of the 1999 Congress on Evolutionary Computation(CECC99).Piscataway:IEEE service center,1999,3:1672-1678.
[9]Becerra R L,Coello C A.Cultured differential evolution for constrained optimazation[J].Computer Methods in Applied Mechanics and Engineering,2006,195(33-36):4303-4322.
[10]Reynolds R G,Chung C.Fuzzy approaches to acquiring experimental knowledge in cultural algorithm[C]//Proceedings of the Ninth IEEE International Conference on Artificial Intelligence.CA:IEEE Computer Society,1997,585:94-99.

相似文献/References:

[1]唐盛,陈思平,尹立东,等.一种快速全自动超声子宫节育环图像识别算法[J].深圳大学学报理工版,2008,25(3):276.
 TANG Sheng,CHEN Si-ping,YIN Li-dong,et al.A fast automatic image ultrasound recognition algorithm of the intra-uterine device[J].Journal of Shenzhen University Science and Engineering,2008,25(1):276.
[2]王昊鹏,冯显英,李丽.基于GLCM皮棉白色异性纤维识别算法[J].深圳大学学报理工版,2012,29(No.4(283-376)):341.[doi:10.3724/SP.J.1249.2012.04341]
 WANG Hao-peng,FENG Xian-ying,and LI Li.Recognition algorithm of white foreign fibers in cotton based on gray level co-occurrence matrix[J].Journal of Shenzhen University Science and Engineering,2012,29(1):341.[doi:10.3724/SP.J.1249.2012.04341]
[3]胡鹏辉,王娜,王毅,等.基于全卷积神经网络的肛提肌裂孔智能识别[J].深圳大学学报理工版,2018,35(3):316.[doi:10.3724/SP.J.1249.2018.03316]
 HU Penghui,WANG Na,WANG Yi,et al.Automatic recognition of levator hiatus based on fully convolutional neural networks[J].Journal of Shenzhen University Science and Engineering,2018,35(1):316.[doi:10.3724/SP.J.1249.2018.03316]

备注/Memo

备注/Memo:
收稿日期:2008-09-10;修回日期:2008-10-30
基金项目:中国人民解放军总装基金资助项目(51401040703CB0102)
作者简介:谭枫(1981- ),女(汉族),黑龙江省哈尔滨市人,哈尔滨工程大学博士研究生.E-mail:tanfeng@hrbeu.edu.cn
通讯作者:杨莘元(1944- ),男(汉族),哈尔滨工程大学教授、博士生导师.E-mail:yangshenyuan@hrbeu.edu.cn
更新日期/Last Update: 2009-02-16