[1]丰建文,吴耿,张维强,等.滑模控制实现噪声干扰超陈混沌系统同步研究[J].深圳大学学报理工版,2009,26(1):36-41.
 FENG Jian-wen,WU Geng,ZHANG Wei-qiang,et al.Synchronizing the noise-perturbed hyperchaotic Chen system by sliding mode control[J].Journal of Shenzhen University Science and Engineering,2009,26(1):36-41.
点击复制

滑模控制实现噪声干扰超陈混沌系统同步研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第26卷
期数:
2009年1期
页码:
36-41
栏目:
电子与信息工程
出版日期:
2009-01-30

文章信息/Info

Title:
Synchronizing the noise-perturbed hyperchaotic Chen system by sliding mode control
文章编号:
1000-2618(2009)01-0036-06
作者:
丰建文吴耿张维强何玲
深圳大学数学与计算科学学院,深圳 518060
Author(s):
FENG Jian-wenWU GengZHANG Wei-qiangand HE Ling
College of Mathematics and Computational Science,Shenzhen University,Shenzhen 518060,P.R.China
关键词:
超陈混沌系统同步噪声干扰滑模流形滑模控制鲁棒性
Keywords:
hyperchaotic Chen systemsynchronizationnoise perturbationsliding mode surfacesliding mode controlrobust
分类号:
O 415.5
文献标志码:
A
摘要:
基于新型比例积分滑模流形,根据滑模控制理论,论证受噪声干扰的超陈混沌系统能实现同步.数值模拟结果表明,该滑模控制器能有效实现混沌同步,且对不匹配的噪声干扰具有强鲁棒性.
Abstract:
The synchronization among hyperchaotic Chen systems with noise perturbation was investigated.With a novel proportional-integral (PI) sliding mode surface,the hyperchaos synchronization among these noise-perturbed systems was achieved theoretically based on the sliding mode control technique.Numerical simulations show that the designed sliding-mode controller can effectively realize the hyperchaos synchronization,being robust to the dismatched disturbances.

参考文献/References:

[1]Pecora L M,Carroll T L.混沌系统的同步[J].物理评论快报,1990,64:821-824 (英文版).
[2]陈关荣,DONG Xiao-ning..从混沌到有序:方法论、展望及其应用[M].新加坡:世界科学出版社,1998 (英文版).
[3]CHEN Mao-yin,ZHOU Dong-hua,SHANG Yun.保密通信中的一种新型可观测的同步方法[J].混沌、孤立和分形,2005,24(4):1025-1030 (英文版).
[4]HUA Chang-chun,GUAN Xin-ping,PENG Shi.混沌系统族的强反馈控制[J].混沌、孤立和分形,2005,23(3):757-765 (英文版).
[5]El-Gohary A,Sarahan A.带有未知参数的Lorenz系统的最优控制与同步[J].混沌、孤立和分形,2006,30(5):1122-1132.(英文版).
[6]LIU Feng,REN Yong,SHAN Xiu-ming,等.通过非线性反馈控制来实现线性反馈的同步方法[J].混沌、孤立和分形,2002,13(4):273-279 (英文版).
[7]CHEN Mao-yin,HAN Zheng-zhi.通过非线性反馈来实现Genesio混沌系统的同步控制[J].混沌、孤立和分形,2003,17(4):709-714 (英文版).
[8]丰建文,徐晨,张维强.基于参数识别定Genesio系统的自适应同步[J].非线性科学和数值模拟国际杂志,2007,8(3):419-424 (英文版).
[9]ZHANG Qing,CHEN Shi-hua,HU Yuan-ming, 等.滑模控制实现有噪音干扰统一混沌系统的同步[J].物理A,2006,371(2):317-324 (英文版).
[10]YAN Jun-juh,YAN Yi-sung,CHIANG Tsung-ying,等.通过滑模控制实现统一混沌系统的强同步[J].混沌、孤立和分形,2007,34(4):947-954(英文版).
[11]JANG Ming-Jyi,CHEN Chieh-Li,CHEN Cha’o-Kuang.超Rōssler混沌系统的滑模控制[J].混沌、孤立和分形,2002,14(9):1465-1476 (英文版).
[12]PARK J H.带有未知参数的超Chen混沌系统的强同步控制[J].混沌、孤立和分形,2005,26(3):959-964(英文版).
[13]Yassen M T..超混沌系统的同步控制[J].混沌、孤立和分形,2008,37(2):465-475 (英文版).
[14]LI Y X,TANG S,CHEN G R.通过相空间的反馈控制来产生超混沌[J].混沌国际杂志,2005,15(10):3367-3375 (英文版).
[15]Hassan K K.非线性系统[M].第2版.新泽西:普兰蒂斯·霍尔出版社,1996 (英文版).


[1]Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64:821-824.
[2]CHEN Guan-rong,DONG Xiao-ning.From Chaos to Oder:Methodologies,Perspective and Applications[M].Singapore:World Scientific,1998.
[3]CHEN Mao-yin,ZHOU Dong-hua,SHANG Yun.A new observer-based synchronization scheme for private communication[J].Chaos,Solitons & Fractals,2005,24(4):1025-1030.
[4]HUA Chang-chun,GUAN Xin-ping,PENG Shi.Adaptive feedback control for a class of chaotic systems[J].Chaos,Solitons & Fractals,2005,23(3):757-765.
[5]El-Gohary A,Sarahan A.Optimal control and synchronization of Lorenz system with complete unknown parameters[J].Chaos,Solitons & Fractals,2006,30(5):1122-1132.
[6]LIU Feng,REN Yong,SHAN Xiu-ming,et al.A linear feedback synchronization theorem via nonlinear feedback control[J].Chaos,Solitons & Fractals,2002,13(4):273-279.
[7]CHEN Mao-yin,HAN Zheng-zhi.Controlling and synchronizing chaotic Genesio system via nonlinear feedback control[J].Chaos,Solitons & Fractals,2003,17(4):709-714.
[8]FENG Jian-wen,XU Chen,ZHANG Wei-qiang.Adaptive synchronization of uncertain Genesio chaotic systems based on parameter identification[J].International Journal of Nonlinear Science and Numerical Simulation,2007,8(3):419-424.
[9]ZHANG Qing,CHEN Shi-hua,HU Yuan-ming,et al.Synchronizing the noise-perturbed unified chaotic system by sliding mode control[J].Physica A,2006,371(2):317-324.
[10]YAN Jun-juh,YAN Yi-sung,CHIANG Tsung-ying,et al.Robust synchronization of unified chaotic systems via sliding mode control[J].Chaos,Solitons & Fractals,2007,34(4):947-954.
[11]JANG Ming-Jyi,CHEN Chieh-Li,CHEN Cha’o-Kuang.Sliding mode control of hyperchaos in Rōssler systems[J].Chaos,Solitons & Fractals,2002,14(9):1465-1476.
[12]PARK J H.Adaptive synchronization of hyperchaotic Chen system with uncertain parameters[J].Chaos,Solitons & Fractals,2005,26(3):959-964.
[13]Yassen M T.Synchronization hyperchaos of hyperchaotic systems[J].Chaos,Solitons & Fractals,2008,37(2):465-475.
[14]LI Y X,TANG S,CHEN G R.Generating hyperchaos via state feedback control[J].International Journal of Bifurcation and Chaos,2005,15(10):3367-3375.
[15]Hassan K K.Nonlinear System[M].2nd edit. New Jersey:Prentice-Hall Press,1996.

备注/Memo

备注/Memo:
收稿日期:2008-05-27;修回日期:2008-10-31
基金项目:国家高技术研究发展计划资助项目(2006AA01A116);广东省自然科学基金资助项目(2008329)
作者简介:丰建文(1964-),男(汉族),湖北省黄冈市人,深圳大学教授、博士. E-mail:fengjw@szu.edu.cn
更新日期/Last Update: 2009-02-16