[1]储颖,邵子博,糜华,等.细菌觅食算法在图像压缩中的应用[J].深圳大学学报理工版,2008,25(2):153-157.
 CHU Ying,Z.B.SHAO,MI Hua,et al.An application of bacterial foraging algorithm in image compression[J].Journal of Shenzhen University Science and Engineering,2008,25(2):153-157.
点击复制

细菌觅食算法在图像压缩中的应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第25卷
期数:
2008年2期
页码:
153-157
栏目:
电子光学与信息工程
出版日期:
2008-04-30

文章信息/Info

Title:
An application of bacterial foraging algorithm in image compression
文章编号:
1000-2618(2008)02-0153-05
作者:
储颖1邵子博2糜华1吴青华3
1)深圳大学信息工程学院,深圳 518060;
2)伦敦大学学院电子工程系,伦敦 WC1E 7JE,英国;
3)利物浦大学电气电子工程系,利物浦 L69 3GJ,英国
Author(s):
CHU Ying1Z.B.SHAO2MI Hua1and Q.H.WU3
1)College of Information Engineering,Shenzhen University,Shenzhen 518060,P.R.China
2)Department of Electronic & Electrical Engineering,University College London,London WC1E 7JE,UK
3)Department of Electrical Engineering & Electronics,The University of Liverpool,Liverpool L69 3GJ,UK
关键词:
人工神经网络反向传播细菌觅食算法生物启发式计算图像压缩
Keywords:
artificial neural networkback propagation networkbacterial foraging algorithmbiologically inspired computationimage compression
分类号:
TN 919.81;TP 183;Q 819
文献标志码:
A
摘要:
基于传统反向传播(back propagation,BP) 网络,提出一种结合细菌觅食算法(bacterial foraging algorithm,BFA) 的改进型BP网络(BFA-BP),并将其用于图像压缩.为克服传统BP网络容易陷入局部极小值的缺点,算法引入BFA特有的复制和驱散操作,以提高网络收敛速度,加强全局寻优能力.对标准测试图像进行仿真实验表明,该算法能有效提高重建图像质量.
Abstract:
An improved back propagation network (BP network) combined with bacterial foraging algorithm (BFA) was applied to image compression.The particular operations,i.e.,reproduction and elimination-dispersal in BFA,were introduced to the BFA-BP algorithm to prevent the premature saturation in traditional BP network.The convergence speed and global search ability are enhanced.The BFA-BP algorithm was evaluated on standard test images in comparison with traditional BP algorithm.The simulation results demonstrate the effectiveness of the proposed algorithm in improving the quality of reconstructed images.

参考文献/References:

[1]尹显东,李在铭,姚军,等.图像压缩标准研究的发展与前景[J].信息与电子工程,2003,1(4):326-331.
[2]高红,惠晓威,杨峰.基于BP人工神经网络的图像压缩技术研究与改进[J].科技信息,2007,2(30):47-48.
[3]郑建华.图像数据压缩的BP神经网络方法研究[J].计算机仿真,2001,18(2):33-36.
[4]陈聆,闫海波,毛万标.基于粒子群优化的BP神经网络模型参考自适应控制系统[J].成都理工大学学报自然科学版,2007,34(6):639-642.
[5] 潘志铭, 林少聪,李霞.带运力限制车辆路径问题的简易蚁群算法实现[J].深圳大学学报理工版,2005,22(3):221-225.
[6]Passino K M.细菌觅食生物仿生-分布式优化与控制[J].IEEE 控制系统杂志,2002,22(3):52-67(英文版).
[7]Rumelhart D E,Hinton G E,Williams R J.反向传播误差的学习表示[J].自然,1986,323(9):533-536(英文版).
[8]丛爽.面向Matlab工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998:55-56.
[9]Li J B,Chung Y K.一种基于蚁群优化算法设计的新型反向传播网络训练算法[C]// 2005 IEEE/PES传输与分布会议与展览:亚洲与太平洋地区论文集.纽约:IEEE出版社,2005:1-5 (英文版).
[10]Tang W J,Wu Q H,Saunders J R.用于全局优化的细菌群集算法[C]//2007 IEEE进化计算会议论文集.新加坡:IEEE出版社,2007:1207-1212(英文版).

[1]YIN Xian-dong,LI Zai-ming,YAO Jun,et al.A survey on trends of image compression coding standards[J].Information and Electronic Engineering,2003,1(4):326-331(in Chinese).
[2]GAO Hong,HUI Xiao-wei,YANG Feng.Research and improvement on image compression technique based on BP artificial neural network[J].Science and Technology Information,2007,2(30):47-48(in Chinese).
[3]ZHENG Jian-hua.BP neural network for image data compression[J].Computer Simulation,2001,18(2):33-36(in Chinese).
[4]CHEN Ling,YAN Hai-bo,MAO Wan-biao.BP neural network model reference adaptive control system based on the particle swarm optimizer[J].Journal of Chengdu University of Technology Science & Technology Edition,2007,34(6):639-642(in Chinese).
[5]PAN Zhi-ming,LIN Shao-cong,LI Xia.A simplified ant colony algorithm for capacity-constrained vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2005,22(3):221-225(in Chinese).
[6]Passino K M.Biomimicry of bacterial foraging- for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22(3):52-67.
[7]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature,1986,323(9):533-536.
[8]CONG Shuang.Theory and Application of Neural Networks Using Matlab Toolbox[M].Hefei:China Science & Technology University Press,1998:55-56(in Chinese).
[9]Li J B,Chung Y K.A novel back-propagation neural network training algorithm designed by an ant colony optimization [C]//2005 IEEE/PES Transmission and Distribution Conference and Exhibition:Asia and Pacific.NY:IEEE Press,2005:1-5.
[10]Tang W J,Wu Q H,Saunders J R.A bacterial swarming algorithm for global optimization[C]//2007 IEEE Congress on Evolutionary Computation.Singapore:IEEE Press,2007:1207-1212.

相似文献/References:

[1]张玉洁,徐刚.基于神经网络的视觉机器人模糊控制[J].深圳大学学报理工版,2004,21(4):301.
 ZHANG Yu-jie and XU Gang.Fuzzy control of visual robot based on neural network[J].Journal of Shenzhen University Science and Engineering,2004,21(2):301.
[2]刘国光,裴磊洋,杨跃敏,等.基于人工神经网络的机场土面区压实度预测[J].深圳大学学报理工版,2021,38(1):54.[doi:10.3724/SP.J.1249.2021.01054]
 LIU Guoguang,,et al.Compactness prediction of airport soil field based on artificial neural network[J].Journal of Shenzhen University Science and Engineering,2021,38(2):54.[doi:10.3724/SP.J.1249.2021.01054]
[3]朱利兰,冯长君.基于人工神经网络研究小鼠抗搏击能力[J].深圳大学学报理工版,2021,38(3):295.[doi:10.3724/SP.J.1249.2021.03295]
 ZHU Lilan and FENG Changjun.Study on anti-fighting activity of mice by artificial neural network[J].Journal of Shenzhen University Science and Engineering,2021,38(2):295.[doi:10.3724/SP.J.1249.2021.03295]

备注/Memo

备注/Memo:
收稿日期:2008-03-15;修回日期:2008-04-20
基金项目:国家自然科学基金资助项目(60572100) ;国家自然科学基金委员会与英国皇家学会合作资助项目(60711130233);深圳大学科研启动基金资助项目(200845)
作者简介:储颖(1978-),女(汉族),江苏省宜兴市人,深圳大学讲师.E-mail:chuying@szu.edu.cn
通讯作者:吴青华(1953-),男(英籍华人),英国利物浦大学终身教授.E-mail:qhwu@liv.ac.uk
更新日期/Last Update: 2008-05-10